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M oor e-Penr ose inver se of a matrix

It is well-known that the unique inverse A™" of amatrix A, which satisfies the condition
ATA=AAT =
only existsif A issguare and nonsingular, i.e. rank(A) =n.

However, the also unique Moore-Penrose inverse A* , which satisfies the four conditions

nxm

AA'A = A )
A*AAT = A" )
(A*A) =A"A (3)
(AA*) =AA* (4)

exists for every matrix A , regardless of its dimension and rank. A DERIVE 5 function for the

computation of the Moore-Penrose inverse is presented in the next section.

A weadlth of properties holds for the Moore-Penrose inverse of which the following three will
be useful later in this paper:

(AA) A =A" (5)
A'AA* = A’ (6)
rnk(A)=n ~ AT=(AA)'A - ATA=1 ©

The Moore-Penrose inverse (or, more generally, any generalized inverse, i.e. any matrix satis-
fying condition (1)) of a matrix can be used to determine the solution(s) of a system of linear
eguations

AXx=Db

mxnnxl  mxl

Such asystem is consistent if and only if
AA'b=Db

If Ax=Db isconsistent, its general solution is given by
x=A"b+(I -A*A)z
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where Z isan arbitrary vector.
nx;

In alater section below we will see how the Moore-Penrose inverse can be used to show that
the so-called system of normal equations, which is derived by applying the principle of least
sguares in linear regression, is consistent regardless of the rank of the regressor matrix. We
then provide the general solution of the system of normal equations, and highlight the fact that
the usual rank assumption on the regressor matrix assures a unique solution.

Computation of the M oor e-Penrose inver se

In a previous paper (Schmidt 1998) the Greville agorithm for the computation of the Moore-
Penrose inverse was described and implemented in DERIVE 4 for matrices with

min(m,n) <2, i.e. vectors, and matrices which have either only two rows or only two col-

umns. For the sake of convenience we repeat here the description of the Greville agorithm,
which leads to the unique Moore-Penrose inverse in afinite number of iterations.

We start with a simple formulato calculate the Moore-Penrose inverse if A = a isavector:

nx1
La ifaz0
a'=rf2 8
?O’ ifa=0 ®)
We now consider the column notation of A:

A:[a1 a, - an]

mxn

and denote the submatrix, which comprises the first k columns of A, by

ﬁ;t :[a1 a, - ak]
Hence
A, :[Ak—l ak]

Moreover, we define the following vectorsfor | > 2:

T A+ A
dj =ajAj A},

Ci :(' —Aj_lA}_l)aj

, l1-cc. ,
b. =c" + J, ' d.
b 1+dja;

Note that dj' isarow vector, c; acolumn vector (and hence clf arow vector) and bj' arow
vector. Then we have

. . * _A*ap'O
Al=Ha af ZQAJI :l] JB 9)
o b 0
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Since A, =a, isamatrix having only one column, its Moore-Penrose inverse is easily calcu-
lated by (8). Using (9) we can then iteratively calculate AJ, A, ..., A, =A".

The following DERIVE 5 functions can be used to compute the Moore-Penrose inverse of any
matrix:

mpi (A) :=
Prog
APLUS := mpiv (A COL [1])
J := 2
Loop
If J > DIM(AY)
RETURN APLUS
aj := A COL [J]
dt := aj‘-APLUS‘-.APLUS
¢ := (IDENTITY MATRIX(DIM(A)) — A cOL [1, ..., J — 1]-APLUS)-aj
bt := mpiv(c) + (1 — mpiv(c)-c)/(1 + dt-aj)-dt
APLUS := APPEND(APLUS — APLUS.aj-bt, bt)
J :+ 1
mpiv(a) :=
Prog
If at-a =0
RETURN 0-a‘
RETURN a‘/ELEMENT (a‘.a, 1, 1)

The function npi v(a), which is used repeatedly inside the function npi (A), returns the
Moore-Penrose inverse of a (column) vector a passed as parameter. The function npi (A)
calcul ates the Moore-Penrose inverse of amatrix A passed as parameter.

Linear Regression and the M oor e-Penr ose inver se
We consider the (multiple) linear regression model

y =X b+u

Nxt  Nxk KX Nxt

where y is the vector of observations on the dependent variable, X the regressor matrix, g a
vector of unknown parameters, and u a vector of disturbances with

E[u] =0; D[y =07
Denoting an estimator of the unknown parameter vector by b, we have

¥ =Xb

u=y-y
The most popular estimator for B is the least squares estimator which minimises the sum of
squared residuals

¢ (b)= iaﬁ =0'a =(y -Xb) (y -Xb) - min;

Note that
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#(b) = (y ~xb) (y ~xb)
=y'y -y'Xb-b'Xy +b X Xb
=b'X'Xb-2y'Xb+yy
is a convex function since X'X is a nonnegative definite matrix. Therefore, finding its first
derivative

o¢ (b) ] ,

— L= 2y'X +B [ XX +(X X

db yat ( + ))
= 2y'X +20'X'X

and setting it equal to 0 is necessary and sufficient for determining the minimum of ¢ (b):
—2y'X+26X'X =0 &

IxK
-X'y +X'Xb =Kgl o
X'Xb=X'y
The final equation constitutes the so-called system of normal equations.
Under the assumption that rank (X)=K we can easily derive the Least Squares estimator
from the normal equations
X'Xb=X'y -
(X'X)*X'Xb=(XX)"Xy =

(N
|

b=(X'X)" Xy
One could get the impression that the system of norma equations is inconsistent if
rank (X) < K . However, thisis not true.
Observe that the system of normal equationsis essentially a system of linear equations:

X'Xb=X'y
—— L
A X b

Using properties (5) and (6) of the Moore-Penrose inverse, it is easily shown that the system
of normal equationsis consistent:

+

AAb=b O XX(XX) Xg XXX'y Xy

- :
x* %

Hence, its general solution is given by

O O
b=(X'X)" X'y +4 -(XX) X XEz
x=Ab+(1 -A"A)z O ——" B ——

=Xy +(1 =X"X)z
where Z isan arbitrary vector.
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The number of solutions, however, depends on the rank of the regressor matrix. If
rank (X) =K, it follows from (7) that X*X =1, and the general solution simplifies to the

unique solution

b=X"y +a CX"X Pz
==t
= X+y
i.e. the Least Squares estimator is ssimply the product of the Moore-Penrose inverse of the re-
gressor matrix and the vector of the observations on the dependent variable.

If, however, rank (X) <K , we have an infinite number of solutions.

Therefore, it is not the consistency of the system of normal equations that is guaranteed by
assuming X to be of full column rank, but the uniqueness of its solution.
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