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Introduction
The majority of the works devoted to the application of the computer algebra systems use as
illustrations purely mathematical abstract problems. Only a few of them explore physics problems. It
is obvious that performing necessary symbolic derivations with the use of computer algebra system
(CAS) significantly reduces the working time and allows a student or teacher to concentrate on
physical ideas  (the most important part), rather than on the very time consuming technical side, i.e.
performing the derivations by hand.

I would like to present the use of DERIVE on the example of mechanics of a rigid body. In
particular, I will demonstrate: methods to evaluate the inertia tensor of a rigid body, how to check
the formula for the inertial moment of the body, the angular momentum, and the kinetic energy of
rotational motion. All of these are expressed by inertia tensor. Also, the calculation methods for the
eigenvalue problem (finding the principal axes of the body) are presented.

A rigid body may be regarded as a system of particles in which the distance between any two
particles is constant. A particular part in the study of the motion of a rigid body is played by the
inertia tensor. This tensor is defined as follows
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( )rρ !  is the mass density of the body, r! is the position vector of the mass element dm  and     V is
the volume of the body.
For discrete mass distribution the integration is replaced by summation:
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Important relations
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For  any point mass, im , (Fig.1.) located at the position ( , , )i i i ir x y z!  the following quantities are
defined:

a) 2
i im R  - the inertia moment, where the distance sin( , )i i i iR r r n r n= = ×! ! ! ! ! ,

b) )( ) ( ( )i i i i i i iL m r v m r rω= × = × ×
! ! ! ! ! !  - the angular momentum,

c)  21
2ki i iE m v= - the kinetic energy.

Fig. 1.

DERIVE will be used to  prove the following relations:
a)

ˆTI n In= ! ! ,
    where I  is the inertia moment of a rigid body about the axis defined by the unit vector  n!

b)  ˆL Iω=
! " ,        ( L

!
 is the angular momentum, and  ω!  is the angular velocity)

c)
1 ˆ
2

T
kE Iω ω= ! !

(rotational kinetic energy of the body , "T" denotes  matrix transposition).

The contribution of the point mass, im , to the inertia tensor is:
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where:

2 2 22( ) ( ),       ,    and so on.ixxi i i i i i xyi i i iI m r x m y z I m x y= − = + = −

In the preliminary step we enter the above definitions (since the variable name îI  can not be used in
the DERIVE we replace it by  Ii__ )



Fourth International Derive TI-89/92 Conference

Magiera: Mechanics of Rigid Body Motions with DerivePage 3

We enter also position vector ir
! , angular velocity ω! , unit vector n!  (oriented as ω! ) and the distance

iR  :

Having done these preliminary steps we begin to prove  the above relations.

a)  We enter:

and then simplify the expression #10

The result #11 ends the proof.
In a similar way we check: the relation for iL

!
:

and the kinetic energy:
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The results  #15 and #18 being the simplification of #14 and #17 respectively, confirm the validity
of the examined formulae for any mass point im . A simple generalization proves their validity for
the whole rigid body.

Comment: We can apply an alternative verification method of an equation. Instead of the
expression of the form #10  we can enter the equation:

Its simplification returns

A similar  procedure can be applied to the kinetic energy

Unfortunately this method is useless when comparing the vectors

DERIVE does not display ‘true’ when  the above equation is evaluated. In this case we evaluate the
difference of the above vectors

Perhaps the authors of DERIVE could remove this small inconvenience.

Principal axes

The principal axis is an axis of rotation with respect to which the angular momentum L
!

 has the
same direction as the angular velocity ω! . Mathematically it means that:

 L αω=
! !  ,         α - scalar coefficient.



Fourth International Derive TI-89/92 Conference

Magiera: Mechanics of Rigid Body Motions with DerivePage 5

On the other hand we have proved that for any rotation axis ˆL Iω=
! ! . The above two relations lead to

the eigenvalue problem:

Îω αω=! ! α  - eigenvalue, ω!  - eigenvector.
After simple rearrangements one gets:

Îω αω=! !   ⇒   Î Iω α ω=! !   ⇒ ˆ( ) =0I Iα ω−
!! , where I - identity matrix.

The substitution of the form Xω ω=
!! ! ) and elimination of ω!  lead to the following  factorized

form:
ˆ( )X=0I Iα−

!!
 ,

where  X
!

  is a unit vector of the principal axis.

First we evaluate eigenvalues of the inertia tensor. These values can be obtained from the solution of
the well known scalar equation

ˆ 0I Iα− =

(the necessary condition for the existence of  nontrivial  solutions  for  eigenvectors)

Alternatively, by the use of the DERIVE function EIGENVALUES.

Example 1: We calculate orientations of the principal axes of the  system of point masses m1 ,  m2
are located  in  the corners of  the square of the side 2a (Fig. 2).

Fig.2.  The configuration of the point masses of the system

Let us apply the computer algebra.

We enter:
a)  the data for the problem, in the convenient vector notation (the  way of  entering the data is not

unique):
m: [m2,m1,m2,m1]
[x: [a,a, a, a],y: [a, a, a,a],z: [0,0,0,0]]
n: DIMENSiON(m)

=
= − − = − − =
=

b)  the components of inertia tensor:  (following page)
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c)  the matrix form of the inertia tensor

We can now enter equation #14 and solve it:

Inserting the eigenvalues that were found, one at a time, into the equation for the  eigenvalue
problem, we find eigenvectors (directions of  the principal axis).

We assign names α1, α2 and α3 to the solutions:

and evaluate the corresponding eigenvectors.

For  α1 we have the equation #19 and its  solution #20:
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This result, #20, requires some comments. From the introduction to DERIVE we know that @
denotes any number. In our problem however X, Y, Z are the components of the unit vector
(directional cosines) the squares of which should sum to one. The first solution is then:

2 2,   Y= ,   Z=0
2 2

X = − .

In the similar way we evaluate the directions of the other principal axis:

The directions of all principal axes are then:

( )2 2 2 2, ,0 ,   , ,0 ,   0,0,1
2 2 2 2

   
−         

As it was mentioned eigenvalues can be also obtained by using one of two DERIVE functions:
EIGENVALUES or CHARPOLY. In particular if we enter #25 and simplify it we get #26

or if we enter the equation #28 and solve it then DERIVE returns
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Not only eigenvalues, but also eigenvectors, can be evaluated by the use one of the DERIVE
functions. We have at our disposal  the function   EXACT_EIGENVECTOR from the utility file
VECTOR.MTH. Having loaded the file VECTOR.MTH we enter, one by one, the expressions:

EXACT_EIGENVECTOR(I,  α1) =
EXACT_EIGENVECTOR(I,  α2) =
EXACT_EIGENVECTOR(I,  α3) =

and get

The results #32, #33 and #34 are, as should be expected, the same as the former ones (#20, #22 and
#24).

Example 2: In this example we demonstrate how to  perform the calculations for a body with
continuous mass distribution. As an example we consider a thin uniform square plate placed in the
xy plane. The side of the plate is a and its mass m.

Fig.3  The uniform square plate with side a and mass m

We evaluate the following for the plate:
a) inertia tensor,
b) its eigenvalues,
c)  principal axes,
d)  the inertia moment with respect to the axis passing through the reference system center, whose

inclination angles to the x, y, z axes  are:
 / 4,  / 4,  / 2.α π β π γ π= = = ,
e)  the angular momentum (components and value) with respect to the axis defined in  (d),  for a

given angular velocity ω,
f)  the rotational kinetic energy for the angular velocity [ ,0,0]xω ω=! .

To present variety of different approaches we will use another notation. If we introduce new
variables 1 2 3,  ,  x x y x z x= = =  then the components of inertia tensor are:

                  ( ) ( )
V V

J dV dVµν α α µν µ ν α α µν µ ν
α

ρ χ χ δ χ χ ρ χ χ δ χ χ= − = −∑∫ ∫
where µνδ  denotes Koronecker’s delta function.  The notation assumes summation over indices that
occur twice (standard notation).
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We enter the data of the problem

and the  inertia tensor

 

Note:
• Τhe inertia tensor  can be also evaluated with the help of the VOLUME_INERTIA  function from

the utility file  INT_APPS.MTH.

a) Simplification of  #5 returns the inertia tensor:

b)  Various methods of eigenvalue evaluation have already been presented. We will use one of them.
Entering and simplifying  the function:

 EIGENVALUES(I__ , λ)
returns eigenvalues:

c)  We assign the names λ1, λ2 and λ3 to the evaluated eigenvalues,  load the  utility file
VECTOR.MTH and  evaluate, one by one, the corresponding eigenvectors:
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Remembering that the symbol  � denotes ‘any number’ and that the sum of squares of  directional
cosines is equal to one, we can conclude from  #11, #13 and  #15 that:

-one of the principal axes is perpendicular to the plate i.e. 0γ =

-the other ones are identical with  diagonals of the square plate i.e. , , 0
4 4
π πα β γ= = = ,  and

3 / 4, / 4, / 2α π β π γ π= = = .

d)  It was shown in the introduction that inertial moment of a rigid body is ˆT
wJ n Jn= ! ! ,

where: (cos ,  cos ,  cos )n α β γ=! - the unit vector for an axis of rotation, Î  - inertia tensor.

We enter the above expressions and data:

after #18 is simplified one  gets

e) We have to enter: the angular velocity vector, the angular momentum vector (see problem

and evaluate it:
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By comparing #20 with the obtained result we observe that the directions of ω!  and L
!

 vectors differ.

f) The kinetic energy of rotational motion is defined by  #24 which, when simplified returns the
result #25:

Remarks: The function EXACT_EIGENVECTOR appears to be better than the  SOLVE function.
To show this let us calculate eigenvectors of the following matrix

One of its eigenvalues is 2A (see below) . We get the corresponding eigenvector with the help of
the function EXACT_EIGENVECTOR

However if we  use SOLVE function we get no solution
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To overcome this shortcoming we simplify the system of equations

It can be easily seen that first the equation of the above system is just the identity (‘true’).   In such
situation we solve the system consisting of the remaining two equations and we get.

Conclusion

DERIVE is a satisfactory and useful tool for teaching rigid body physics.
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