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Summary

The goal of this workshop is to investigate the mathematical pillars on which the RSA cryptosystem
rests, namely the (extended) Euclidean Algorithm, Fermat’'s Little Theorem and the Square-and-
Multiply method. Furthermore, it is shown how the Chinese Remainder Theorem (CRT) can be used to
speed up the decryption and the generation of signatures in RSA considerably. A number of common
attacks on RSA are discussed. All algorithms and attacks are illustrated by using the new powerful
programming language of Derive 5.

Introduction

Although the RSA cryptosystem, invented by R. Rivest, A. Shamir and L. Adleman (cf.
[3]), has been around for little more than two decades, it is today ubiquitous in modern
telecommunication: RSA is used by Web browsers to ensure Web traffic, it is used to ensure “pretty
good privacy” (PGP) and authenticity of e-mails and, last but not least, it is widely used in electronic
credit card payment systems. (If you registered for this conference via Internet, you will know that its
organizers also used RSA for the secure transmission of your data.)

The importance of RSA in modern telecommunication is certainly one of the reasons why it should be
represented in our educational system. Even more important is the fact, the mathematical theory behind
it isfor one thing very appealing and for another involves some of the most fundamental theorems and
algorithms of all mathematics. Take thisas akind of apology for dealing with this subject once more,
although it has aready been treated by many authors including myself (cf. [4], [5]). Another
justification is the fact that unlike previous versions the new Derive for Windows 5 (DfW5 for short)
now offers everything that is needed to treat this topic properly due to alot of new powerful features. In
fact, one of the main goals of thisworkshop is exactly to prove this claim.

What isthe RSA cryptosystem all about?

Although dealing with the question in the headline might be carrying coals to Newcastle in this forum, |
will do it al the same - not only for the sake of completeness, but also in order to introduce some basic
notations for the following.

Basically, RSA belongs to the so-called public key cryptosystems. As the name suggests, the public key
is public and is used to set up the encryption E of messages. Here, E is a so-called one-way trapdoor
function, i.e. it is virtually infeasible in a reasonable time to invert E without some additional
information — the “trapdoor” -, which is the private key.
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To be more specific, suppose Bob wants to create an RSA public key and a corresponding private key.
Then he should do the following:

1. Generate two large random (and distinct) primes p and g, each roughly the same size and
compute n: = pg and v: =lcm(p-1,9-1).

2. Select integersed suchthat 1 <ed<vand ed = 1 mod v, where d should be large (roughly
the size of v).

3. Publicizethe pair (n,e), which is his public key, and keep secret his private key d.

If Alice wantsto send a message to Bob, she is supposed to do the following:
1. Obtain Bob's authentic public key (n,e).
2. Represent the message as an integer min the interval [O,n-1].

3. Compute c = m°mod n.

Bob in turn can easily recover m from ¢, by computing m = ¢* mod n.

Before dealing with the whys and wherefores in detail, let’s simply set up an RSA environment using
Derive and compute an example.

In the first place, we need a routine text_to_number(t) that converts an aphanumerical string t into a
decima number. By default we assume that t uses the full ASCII character set. The corresponding
decima number is then simply the decimal number whose digits with respect to the base 256 are
exactly the ASCII-numbers of the characters of t (both read from left to right). In some textbooks
though, a more primitive source coding is used with the following correspondence: A=01,
B=02,...,Z=26 and space = 00 (no other characters are allowed). If you want to use this kind of source
coding, you should set the optional parameter o to “plain”. (Note that currently inverted commas are
left out in listings of programs!)

text_to_numbher{t, o := full, n_ == B} :=
Prog
t == NAME_TO_CODES{t)}
Loop
If £ = [1
RETURH n_
If o = plain
n_ == 18@-n_ + MOD{FIRST{tY — 32, 32)
If o = full
n_ == 256 -n_ + FIRST{t)

t := REST{t)

What follows are two ssimple examples. The second one yields a decimal number m with 238 digits,
which will be used as message in the following.
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tewt _to_numnbesr{HLY CAPLIAL LETTER:E AHD SPAGCES AHE ALLOWED USIME THE OFIIOM FLALIH. plaim}

151491 22580A380 1 R ZAE 1 2N IS ZA2B05 1 19008 1 4B NA1L 91 681 35 170080 1 HES AR 121 21 52305 48 ™
AA1FAYAAPEATPAEEASE 5162151 4801 R 21 @914

text_to_nunbsp{By defaule the Full ASCI] character set. including e.g. 2. #, %, 7, (. @&

g, ., iz at your dizposal )

m = text_to_munber{By default the full ASCI] character set. inclading ».g. . 9, 9. T,
. B ptoc.. 1s At wour disposal.)

EPRIZRLLESERIBIVLELRAHZVRETZL VR 31 M INITIZ1IETAVL Y TEPR M SLEEVFI Z2VIR5 M1 PR PLAE1 1 TIT THE AL W™
AE1 IR TASARATRATEARGIAVE A4S PRAGARIZF1AATESAZINRIZ1 TISANAZ41 311 22BAPRZFEATRNAGARTILZAT61 ™
J6IFHEE IS AT TR IR PEE1 PRTRER A6 PATILZAI SR IASETERATIRAVINPAZ

237
AFFREC{m} = b.Vbd36L40E% 18
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If we choose the modulus n to be a number with about 1024 bits, i.e. about 309 decimal digits, which is
a very common size nowadays, we can encrypt the full text in one run only. (In general, if nis given

beforehand, it might be necessary to split up minto several decimal blocks each < n.)

The following routine generates an RSA environment, such that that modulus n has k bits and its prime
factors p and g have about half as many bits. Furthermore, e is chosen to be the fixed Fermat prime
65537. Then e is amost certainly coprime to p-1 and g-1 and we can use the built-in function
inverse mod(a,m) to find the unique positive solution d < v of the congruence ex=1modv with
v=lcm(p-1,g-1). Furthermore, the special of e is obviously advantageous when it comes to forming

powers m® mod n, as m*" mod n is simply the result of 16 squarings mod n starting with m.

REA_init{k) :=
Prog
e = 2™6 + 1
Loop
p = HEXT_PRIME{RANDOM{Z2“CEILING{k-23})
GCD{p — 1. e} = 1 exit
FLOOR{{2"{k — 13 + RANDOM{2"{k — 13})-p)

= NEXT_PRIME{q}

P *g~ GCD{g — 1. e} = 1 exit
b

I

q
NUERSE_MOD{e. LCM{p — 1. g — 13}

[
Il

q :
Lo

L1

o
q -
I

IR

n -
d :
ok

Before using this routine for the very first time, it is very important that the global variables p,q,n,e,d

areinitialised by a statement like

[p ==, q ==. n ==, e :=, d =]

otherwise Derive won't recognise these variables after exiting the routine RSA _init(k). (Isthis abug or

just a“feature” of DfW5? Frankly, | don’t know.)
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REa_inded{i@2d4} = ok
B =

FSAMEZTAINE YIS IAL TATATI PERTFASTIATI A1 A5ATEATARS 46T 2P M B3R AT 4RSS A1 41 951511 AG™
GRRFPPSARRAIBGAEIZIZZ15611 443 4AP5EFHEIFRETF AT 4RLEAISIAISZII P16 64T

1Y5AZIHS VAR TERA3ELEEZ6 163 VANSER PHETINE VIR 1 X34 Y UMBMEL L 26 ML S I VIAZAH1 ZH 1R LR 2 281 TS H™
GYEMBEZI4466 RIS YRR I4APAREZAY I T PREZIRASAE A RES VIAT YRS IASIZAIRIGALET

no=
LS M ey L VR VRE R THEAE L S P YR A e AR Y LAY MY VL S L 1AL E e L e
VHEZTHHZERTHES R ZVH VRS BRI BH6-G AV PR ST VANE T YL I YASEVHT TR Y1 VAR 5421 36 6 2061 9Fe5 1531 127
3341 PEI TN TIEI1S1 AR RS 1ER] TYZATEAATIES YRS A2 A BFMREFIIEE1 26 TR ARG PTZEDRAZTAAZIRAA6™
1ATEAIRTIIIE521 447 IR 6 IA5A0R 1 BV I 5446 26548 4B6 379203

e = 55T
i =
PTG TERAR TP ATPRAZAGRAZ I3 TRAITI S TRIGATIR VPRE I PAZTPRE T MRIBIAITEIRR TS A4
3135355‘13?132!lJ3BB.TE?ETEE?EEEE11!3??2?912543535?]B?IIE*?TI5515555?3353?33%53Bﬂ1?4@2"

IR THEEETPEZ FL ACGLA4BRI 11 TIBEE2PFIILYEL 47 27480 FL2 15042 40 4TFAPE L6672 A28
A1 BETASFPLYERL Y TIIAYERRGE JHETAPLEG T8 341 1 T 744457

Above you can see how the values of p,g,n,e and d typically look like after calling our routine
RSA _init(k) with k=1024. In particular, it is easy to see that n really has exactly 1024 bits:

CEILING(LOG(n. 2)) = 1824
Given these values encryption and decryption is actually very easy now.

encEypt{m} o= Hﬂﬂ{n'. n

decrypt{m} = II:II:I{r.-d, n

{c 2= sncrypti{m}} =

1176 P E L 24 S0 YRS PRS2SR 66 FHATLAATAZE P L I PRAB T PA3 21 VR 8 33 AT e T ORI 18T TIA0 B 2V E
130051 4FAI5 396 8 Y61 VAR TZI RS AT VRS 2941 PR 1 6 S ATSE Y PLAEEPREAE S ITVYERAY TR T AT
ASFFFPEATIIIAASIL TIFR4L TIPS 141 300 BERATEL 1 TAR PRI Z55TIIAS 46 4R TRE AT THA S ARG PR 2 IS 4RE 1 F 7
AELTPAETF IR ITELS 1SRRG ITILIANL 41181 11686 T TP21449

(A i= decrypL{c)) =

PRI ISSEGEEIEIPHASHAETEG AL P11 IL IR TETIETATL P TEFLALS 560 T2 FR65A1 F4RL P11 1 TIZTAGAAS "™
EFEG1 142 FALEETEAY ARG 1475 J45 FEBLL II D1 E 4TG5 42 PREREL PR A 41 JIL 12 TAETR FPLATELAL A6 PIL 24T
B13EIYSEE IS AAEY L TR S 2R E VR L P TRE G T AR VS E A DR RAL A TRAA T S E RS2

H-m=8
WEell, | still owe you the routine that converts a decimal number back to a meaningful text.

number_to_text{n. o = full, t_ = 3 :=
Loop
If n =8
RETURHN t_
If o = plain
Frog
t_ = ADJOIN{CODES_TO_NAME{MOD{n. 188} + 64 — 32-@"MOD{n,. 188>}, t_}
n := FLOOR{n. 18@})
If o = full
Frog
t_ = ADJOIN{CODES_TO_MAME{MOD{n. 256}}. t_}
n := FLOOR{n. 256}

Will it pass the acid test?

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 4
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numbar_to_text{m) = By default the full ASCI] character pet. including e.g. B. ¥, 7, 1.

€, P ete., is at your dizposal.

Yes! For thefirst time, it is possible now to go through all steps of the RSA encryption and decryption
including the conversions of textsto decima numbers and vice versa.

Just a few words to the use of RSA for digital signatures. When the RSA cryptosystem was first
publicised in the August 1977 issue of Scientific American, the inventors posed a small problem to the
readers. To prove their authenticity they also published an electronic signature s along with the public
key (e,n), namely
e o= TEET
-

11462 T PHARRA PEET2AS PP I A1 4661 2HA A1 B2VE T 242 A6 256256 1 HAZ 915 TR P AL 245 TI IR PR IS ™

IR IR A TALBSRTRTATL AP F IR AATER A5 41
5 =

1671 PHEL 1 SHIHEE 4161 521 18916 E I FHEALA36 RIS EF1 1 21V HAS W8 446 Y 2F IR 2655 1AE P ZET L 147
AFALEIS PHRAR LS EAZATRS T IR 4RI AL THIAI T3

claiming that sis simply the text “FIRST SOLVER WINS ONE HUNDRED DOLLARS’ encrypted by
their private key d (known only to them!) rather than their public exponent e. And here is proof by
Derive that this signature was valid:

e
number_to_text{M0D{s . n}. plain} = FIRST SOLUER WINS ONE HUNDRED DOLLARS

In fact, by this exchange of public exponent e and private exponent d, everybody can read the resulting
ciphertext using e as exponent for decryption and compare the outcome with what was claimed by the
sender, but nobody can forge the signature without knowing d. Needless to see that this special option
of RSA to prove the authenticity of the sender adds very much to its popularity.

The Extended Euclidean Algorithm or How Does INVERSE_MOD(a,m) work?

We now turn to the mathematics behind RSA. The first question regards the built-in function
INVERSE_MOD(a,m) that computes the inverse of a mod m under the assumption that a and m are
coprime and which was used above with a= e and m = lcm(p-1,g-1). How does it work?

It smply makes use of one of the oldest algorithms of all mathematics, the Euclidean agorithm. In
fact, it has been called by D. Knuth (cf. [2]) “the granddaddy of al algorithms, because it is the oldest
nontrivial algorithm that has survived to the present day”. It can be used not only to compute d =
gcd(ab) of any two integers a and b in a very efficient way, but in its extended form also to find
integers x,y, such that d = xa + yb. Assuming that a=0 and b>0, which is in view of
ged(ab)=ged(|a],|b|) no loss of generdlity, and setting r,:=a and r,:=b we can always form the
following “chain of divisions’ that eventually terminates with a division whose remainder is 0, as the
numbers r,,1,,...,r, form astrictly decreasing chain of positive integers.

fy = Qpfy +1, with O<r, <r,

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 5
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L= qr,+r, with 0<r,<r,

M- = Onoolna +rn with O<r, <r,,
Mo-1 = Onaln
It is easy to see that ged(r,,r,) = gcd(r,,r,) =...=gcd(r, ,1,) =r,, hence r, =gcd(a,b). Furthermore, all
r,i=0,1,..n, can be expressed in the form r, = xa+yb. Thisistrivial for i = 0and i = 1, because of

r,=a=1a+0b and r, =b =0a+1b. Assuming that this had been already been proven for all i <k with
1<k<n,itisthenvalidasofori =k, dueto

Mo =Nz ~Oalfea = (X2 Y, 5b) =G, (X 4a +y, 4b) =
= (X2 ~ O XA+ (Vo QoY 1)b

In particular, we see that X, :=X._, =G, % ad Y, = V¥,, =0, s, K= 2,3,...,n, which means that
the recursion formulasfor x, and y, are exactly of the same form as for the r, .

How could a DERIVE-program look like that computes d=gcd(a,b) along with integers x and y such
d=xatyb? First, let me point out that there are already two programs in the utility filesNUMBER.MTH
and NUMBER.DFW, respectively, that deal with this task, namely

EATENDED_GCD{a,. b, d_, x_} ==

If a =8
RETURH [B,. [B. @]]
RETURN SIGN{a}-[a. [1. B]]
t= GCD{a. b}
asd_
bhod_
:= TNUERSE_MOD{a. ABS(h})
A [x . €1 — a-x_3b]]

d_
a

h :
»_
[d_

ERTENDED_GCD{a. b, g_. »_} ==

Prog
a == [a. [1. B]]
[b. [B. 1]]

h -
If FIRST{h} = B exit

Loop
g_ == FIRST{a)/FIRST{h)}
g_ = ROUND{RE{qg_}) + ROUND{IM{g_}>-i
¥_ = a —q_-h
a ==
h = »_
If FIRST<{a) = A
RETURM [A. [B. B8]11]
Loop
If @ £ PHASE{FIRST{a}} < m-2
RETURN a
a * i

Both compute [d, [X,y]] for integers aand b, but are not very satisfactory for our purposes. The first one
isvery fast by calling the built-in function INVERSE_MOD( ), which in turn calls an internal function
like EXTENDED_GCD( ) on a LISP-level. Thus from a didactic point of view, we have a perfect

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 6
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vicious circle here! The second aso works for Gaussian integers (cf. [6] for a detailed discussion of
these numbers) and without any reference to INVERSE_MOD( ), but is unnecessarily complicated, if
you areinterested in integers a, b only.

Hence let’s make an extremely streamlined version of the second program that covers only the case,
where aand b are nonnegative integers. It could look like this:

BGCD{a, b, g_, »_3 ==

Prog
a := [a. [1. B]]
[b. [B. 1]]

h :
Loop
If FIRST<{h) = A
RETURN a
g_ == FLOOR{FIRST{a}/FIRST{h}>
¥Y_ == a —q_-h
a :=h
r_

h :

| hope that this form shows (at last!) that the Euclidean algorithm is incredibly simple even in its
extended form!

Let’s go back to the question how to compute the inverse of a mod m on condition that a and m are
coprime and nonnegative integers. Since gcd(a,m)=1, we could use xgcd(a,m) to find integers x and y
such that xatym=1. But this means that xa = 1 mod m, in other words X is the inverse of a mod m we
are looking for! Since y is not needed at al here, when designing a routine inv_mod(a,m), we could
streamline our xgcd( ) even a bit further by leaving out the components referring to y in the vectors
above. (This is what a good program is all about: Modifications are very easy due to its genera
structure!)

inv_mod{a, m, g_, »_} ==
Prog
a = [a. 1]
[m. B8]

FIRET{m} = 8
If FIRST(a) =1
RETURN al2
RETURN 7
= FLOOR{FIRST{a)}-FIRET{m}>
_ = a - g_-m

Lar L - |

m =
Loo
I

Sama

m
»

Concluding this chapter let’s note an important consequence of the Euclidean algorithm, which is
needed in the following

Lemma (Euclid): If ab,c areintegers, such that ajbc and ged(a,b)=1, then ajc.

Proof: Since gcd(a,b)=1 we can find integers x and y such that xatyb =1. If we multiply this equation
with c, we get xac+ybc=c, where aisadivisor of xac and y(bc), hence also of xac+y(bc)= c.

Corollary: If p is a prime, then plabimplies plaor p|b. More generaly: If a prime p divides a
product, it must divide one of its factors.

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 7
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Proof: If plab, then either p|a or gcd(p,a)=1. In the latter case we have p|b according to Euclid's
Lemma

Fermat’s (Little) Theorem and Its I mportant Consequences

Now that we know how to construct the RSA-keys e and d by means of the Extended Euclidean
Algorithm, the question arises why RSA works with these numbers as it did in our example. This is
where the following important theorem, often referred to as Fermat’s (Little) Theorem, comes into

play:
Theorem: If pisany prime and aany integer not divisible p, then a®™ =1 mod p.

Proof: Let's consider the multiples a, 2a, 3a, ... , (p-D)a We first claim that these numbers are all
incongruent mod p. Assuming on the contrary that ia = jamod p, where 0< j <i <p w.l.0o.g., leads to

p|i—j)a and hence to pla or pl|i-j according to the corollary above. Both cases are clearly
impossible. In asimilar way one can see that none of the elementsis0 mod p, i.e. divisible by p.

Since a, 2a, 3a, ..., (p-1)a are al different mod p and incongruent to O, they must be exactly the
elements 1,2,...,p-1 apart from the order. Hence, if we form the product of a,2a,...,(p-Daand 1,2,...,p-1
the results should be equal mod p, i.e.

a(2a)(3a)...((p—DYa) =12 3...[{p —-1) mod p.
By regrouping this implies that

p|(@”* ~1)(p-1)!

Since p doesn’'t divide any of the factors of (p-1)!, it must divide a®™ —1 according to the last corollary,
which is exactly what we wanted to prove.

Fermat’s Little Theorem can be dlightly generalised to
Corollary: For any prime p and any integer athe congruence

1+k(p-1)

a =amod p

holdsfor all k=0.

Proof: Thisistrivid, if pisadivisor of a because in this case both sides of the congruence are 0 mod
p. On the other hand, if aisn't divisible by p, this follows from

aP? =a(a”*)" =a mod

where a”™ =1 mod p was used.

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 8
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At last we are ready now to prove that RSA works with our choice of e and d, i.e. that the mappings
mi— m* mod n and ¢ c¢® mod n are inverse to each other. Since (m®)? =m™ and (c)®) =c¢® and ed
=1 modlcm(p-1,9-1), al we haveto proveis

Theorem: For al primesp and g, p# g, and all integers athe congruence

1+kem(p-1,9-1)

a =amod pq

holdsfor al k =0.

Proof: Obvioudly it suffices to prove that

1+kiem(p-1,9-1)

a a1+k| cm(p-1,9-1)

=amod p and =amod g.

But thisis an immediate consequence of the corollary to Fermat’s Little Theorem, since lcm(p-1,g-1) is
amultiple both of p-1 and g-1.

By the way, the inventors of RSA (and sadly enough, many authors of textbooks on cryptography
thereafter) used the product (p-1)(g-1) instead of lcm(p-1,g-1). Of course, the decryption exponent d
you get in thisway will also do thetrick, but it is usualy afew bits larger than necessary. In fact, it can
be proved that our d is the smallest possible one.

As we have seen, Fermat’s Theorem is at the heart of RSA. But it also proves very useful when it
comes to generating large primes as they are needed for RSA (and also some other cryptosystems).

The idea behind the use of Fermat’s Theorem as primality test (or rather compositeness test) is simple:
If you can find for any given n an integer awith O<a<n such that

a"t#1modn

then n must be composite. Unfortunately, thisis not a strict primality test as the following computation
with fixed a=2 shows:

n - 1

SELECT {800 2 .y w1 s o PRIMECnY, n, 3. 18608, 23

[341. S61. G645, 1185, 1387, 1729. 1985, 2847. 2465, 2780. 2831. 3277, 4833, 4369. 4371,
A6H1. S4ER1. GEEL. TISTY. HIZL, H481, HY11]

22 composite numbers below 10000 pass the so-called Fermat test for the base a=2 without being
prime! What is more, there are composite numbers n (called Carmichael numbers) which pass the
Fermat test for all ain the range O<a<n except for those with gcd(a,n) # 1. For example, 561=3[11017
is such anumber and even the smallest one.

S68
SELECT {MOD{a » 561y #1 ~ GCD{a, 561} = 1. a, 1. 568} = []

As was shown in 1992, there are even infinitely many of these numbers. The following theorem
(without proof) gives a nice characterisation of Carmichael numbers.

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 9
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Theorem: A composite number n is a Carmichael number if and only if it is squarefree and p—1|n—1
holds for al prime divisors p of n.

We can use it to determine all Carmichael numbers up to 10000 using Derive:

Carmichael?{n) ==
Prog

If n =1 + PRIME{n}
RETURHN false

If SOME{e_ > 1., e_, FACTORS{n} 12}
RETURHN false

If SOME{MOD{n — 1, p_ — 13} > B. p_. FACTORS{n) 41}
RETURHN false

true

SELECT{Carmichael?{n}. n,. 1. 18888}
[561,. 1185, 1729, 2465, 2821, 6681, 8%911]

Carmichaegl numbers are also directly related to RSA in avery interesting way. If one (or even both) of
the primes p and q is substituted by a Carmicheal nhumber and if additionally gcd(p,g)=1 holds, then
RSA will still work with e and d chosen in the usual way! On the other hand, getting p and g by
factoring the modulus n is much easier in this case, since a Carmichael number has at least 3 prime
factors!

We have seen above that a smple Fermat test won't exclude Carmichael number n, unless we are
extremely lucky by finding a base a with O<a<n and gcd(a,n)>1. Fortunately there is another very
simple condition for primes which can be combined with the Fermat test to make it stronger. It is the

fact that x* =1 mod p has only the solutions +1, if p isaprime, dueto
p‘xz—lz(x—l)(x +1) O p|x-lor p|x+10 x ==+1modp.

Let’s assume in the following that n is odd (otherwise the primality testing of n would be very simple,
wouldn't it?) and n = s2' +1 for positive integers sit, where sis odd. If ais any integer in the range 0 <
a< n, then consider the sequence

as, aZS’ a4s, . a(n—l)/2
mod n, which you get by repeated sguaring starting with a®mod n. Since you also get these numbers

(but in inverse order) by taking repestedly the square root of a"* mod n, which is supposed to be= 1
mod n by Fermat’s Theorem, this sequence should either contain —1 or consist of 1'sonly, if nis prime.
This sharpening of the Fermat test leads to the so-called Rabin-Miller test, which is by far the most
widely used probabilistic primality test. In particular, it is used by Derive (and most other CAS) along
with other primality tests. An implementation in Derive could ook like this:

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 10
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RABIM_MILLER{n,. a, =_) ==
Prog
s_ ==n -1

Loop
g_ =/ 2

If ODD?¢{s_) exit
a == — ABS(MODS{a™=_, n}}

1]
f a = -1 exit
] =n -1

URN false

T
a = MODS{a™2. n)}

And here again the examples from above that clearly show its efficiency:

SELECT {RABRITH_MILLER{m. 2} ~ = FRIME{n}. wm. 3. 10008, ZF} = [ZB47,. JT77. 9833, 46R1. B3F1]
SELECT{RABIH_HMILLEE{m. 2). m,. [561. 118G, 1729, X465, ZHE2L1. EREL. EFL1]) = []

The numbers tested so far have been relatively small. How about really large, say with 1000 digits or
more? Have alook at the following example:

18688
RABIN_MILLER{18 + 453, 2) = true

It took only 3.42s on my Pentium 450 PC, which is surprisingly fast. Since the modular exponentiation

plays an important role in RSA itself (note that in the decryption c— ¢! mod n the exponent d has
about the same size as n, that is several hundreds digits!), we should have a close ook at the underlying
algorithm.

Just like the Euclidean algorithm it is aso a very old nontrivial algorithm (according to D. Knuth “its
chief rival for this honour”). In fact, it was already used by the ancient Egyptians for multiplication.
(Note that you can view a product of two postive integers as additive power, eg.
23[5=23+23+23+23 +23.)

The basic idea of this algorithm, which is usualy called “Square and Multiply” method, is best

illustrated by an example. Suppose we have a monoid (H,0) and would like to compute say a'® for an
allH.We could do this by first computing the sequence

a a2 a4 a8 alG a32 a64
in H (note that you have only to square 6 times starting with a!) and then multiplying appropriate
powers of this sequence according to binary representation (1100100), of 100, namely

00 — 44,432,464

a® = a‘a*a

Hence, a very general implementation of this method, which can be adapted to your needs, could look
likethis:
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[op{a. b} ==, id :==]

SAM{a. n, b_ == id) :=
Loop
Ifn=-8
RETURN h_
If ODD?{n)
h_ == op{a. b_)}
Ifn>8
a = op{a, aj)
n := FLOOR(n, 2
To useit you only have to specify the operation op(a,b) in H and the identiy element of H. For example,
the “ Egyptian multiplication”, which should rather be called “Double and Sum” method, can be carried

out in this way:
[op{a. b)Y == a + h, id := 8]
SAM{37,. 46) = 1782
37-46 = 1782

If we want to perform a Fermat test for the huge number 10" + 453 above, we should specify the
operation and the identity in H in the following way:

[ 186808 ]
op{a, b} = MOD{a-h,. 18 + 4533, id =1

1008
SAM({2. 18 + 452) = 1
Thistook only 5.02s on my PC. Of course, a“tailor-made” power_mod( ) without any detours, like

power_mod{a, n, m, h_ == 1% ==
Loop
If n =8
RETURMN h_
If ODD#{n}
h_ := HOD{a-h_,. m}
If n > 8
a = MHOD{a-a. m}
n = FLOOR{n. 2}

should be even faster. Now the computation

18848 18868
power_mod{Z, 18 + 4582, 18 + 453y = 1

takes only 4.33s, which is remarkably close to 3.42s, the time Derive needed for
1000
18 + 452 1000
MOD |2 . 18 +453) =1

on my PC. (Even though Derive is so smart to use the “ Square and Multiply” method internally as well,
if the parser recognises that the first argument of MOD( ) is a power!)

Emulating some attackson RSA in Derive

D. Boneh, certainly an expert when it comesto RSA, saysin [1] that “securely implementing RSA isa
nontrivial task”. In thisfinal chapter, | would liketo illustrate afew of the possible dangers and pitfalls.
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One of the most obvious attacks on RSA is trying to factor the modulus n, since it is clear that anyone
who can find the prime factors p and g of n can compute the private key d in just the same way as we
did. Embarrassingly enough, one of the main pillars on which the RSA construction rests is not a
theorem, but a belief, namely the belief of most mathematicians in the difficulty of the factorisation
problem. The situation is even worse: We cannot even prove, that the so-called RSA problem, namely
to solve the basic congruence

x® =cmod n

is computationally equivalent to the factorisation problem, though there is some evidence for it. In other
words, it is still possible that there might be an efficient algorithm to solve this congruence without the
use of the prime factors of n.

It must be said though that there are variants of RSA, where the RSA problem is computationally
equivalent to the factorisation problem. The most important one of this kind is the Rabin variant. Here
the encryption exponent e is always 2, which is clearly forbidden in the classical RSA because of the
requirement gcd(e,(p-1)(g-1)=1. Since this last equation is not fulfilled, the solution of the RSA
problem is no longer unique mod n, but there are usually 4 solutions. This leads to the question how to
solve congruencies
x* =c¢ mod pq
for large (and different) primes p and g. Let’s consider the simpler case
x> =cmod p
for any prime p first. We could do this by calling SQUARE_ROOT(c,p) from NUMBER.MTH, it is
true, but if we assume that p=3 mod 4 (no problem, as about 50% of all primes should fulfil this
condition!) , then assuming that ¢c=a?mod p for some integer a, we see that c'**’*mod p is a solution
because of
((C(p+l)/4)2 — C(p+1)/2 — C(p—l)/ZC Eap—lc =cmod P
(Again we were referring to Fermat’s Theorem!) Since p isaprime, all solutions are given by
+c**Y* mod p.
It should be clear by now that the four solutions of the original congruence mod pqg are exactly the
solutions of the four congruence systems
x=+c"*mod p
x = +c“Y*mod q

you get by the four independent choices of the signs. To get the unique solution mod pg now, we could
by apply the routine CRT(am) from NUMBER.MTH (CRT, of course, refers to the Chinese
Remainder Theorem), but | prefer to use Fermat’ s theorem — an al-purpose tool, isn't it? — to represent
the four solutions by means of an explicit formula. In fact, they can be given in the form +r, +s mod

pg with
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r =(c®*"*mod p)(q° mod p)q +(c'**"* mod g)(p°* moda) p

p+l)/4 q+l)/4

mod g)(p** moda) p
as you can easily check by reducing these expressions mod p and mod g, respectively.

s= (" mod p)(g"~* mod p)q —(c

And here again the implementation of the Rabin variant in Derive:
Rabin_init({k) :=

Prog

Luup
p == NEHT_PRIHE{RHNDOH{E*GEILING{k/E}}}
If HOD{p, 4} = exit

E := FLOOR{2"{k - 1} + RANDOM{2¢(k — 1)), p)
oop
g == MERT_PRIHME{qg}
If p # g ~ MOD{g. 4} = 3 exit

n:=pygqg

a = MOD{q"(p - 2. p)

hk== HOD(p™Cq — 2). qJ

o

2
Rabin_encrypt{m} := HOD{m . n)}
Rabin_decrypt{c, »_, =s_3} ==

P
Pﬁg MOD{c™{{p + 13}/4). pr-a-g + MOD{c™{{

HOD(c~((p + 1)/4)] p)-a-a — MOD(e™(C
HOD{[P - "P_. 85_. —s_]. n)

.
Snr S
TN
e
Snr S
L I

==
Snr S
oo
L-R -1

[P :=. g ==, n ==, a ==, b ==]

Just to save space, we use a very small number k of bits in the following example, namely k=64. (You
should however set k to a realistic size such as k=1024 and check that it's only a matter of seconds in
thiscase aswell!)

Rabhin_init{64} = ok
p = 1868682039
q = 8878489951
n = 7417254824467698089

{m = text_to_number{GO AHEAD, plain}} = Y158001H080581084
{c == Rabin_encrypt{m}} = 7916892294297412252
v == Rabhin_decrypt{c)
[(PESY244R5 321 ARRZESE, 2I5HR1AV71256RET23Y,. TISAAALARASALEA, FA165I9E243596299485)

WEGTORY [v_. number_to_text{v_. plain}]. w_. u)

THSY2A4A5 321 DRHZASH GE=LE" Jvhre

2IGEMATMISEEATIIY  Bowdnls+ g

7150881 BEE5 8184 GO AHEAD
F41I6GTITEZAIGPEITRES  Tilgtk{adl-
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As you can see the plain text is among the 4 solutions. (Usually the other three solutions don’t yield a
meaningful text as in our example, but one could also add some redundancy to recognise the correct
solution for sure.)

Now, why is it that for the Rabin variant the RSA problem and the factorisation problem are
computationally equivalent? Well, have alook at our example again. Take any two of the four numeric
solutions such that their sum is not n (that is they shouldn’t belong both to the same pair £r or *s

mod n) and compute the ged of their sum with n, e.g.

GCD{'7A5924405321 882858 + 7150001 A8A5A1A4, n) = 8878489951

The result is one of the two prime factors of n (here g)! | leave it to the reader to check that thisis also
true in the general case due to the special form of r and s.

Let’s go back to the factorisation problem of n. It's widely believed to be a hard problem, if n is
sufficiently large, say with several hundreds decimal digits, and the factoring attack should usualy fail.
On the other hand, it can be surprisingly easy to factor even a large n if the prime factors p and g had
been chosen carelesdly.

For example, if p—1or g—1 contain only relatively small prime factors, there is the so-called (p — 1)-
method by Pollard which takes advantage of this fact to factor n. It is again based — you won't be
surprised by now — on Fermat’ s theorem. Suppose that r is a positive integer, which isamultiple of p —
1, say r = k(p-1) for some k, and that a is any integer coprime to p. Then according to Fermat’'s
Theorem the congruence

a =(@"*=1modp

holds and hence p‘gcd(ar -1,n). Hence, unless you are extremely unlucky and gcd(a' —1,n) =n, you
have got a nontrivial factor of n by computing this gcd!

The problem isto find such an r that is a multiple of p — 1 for one of the prime factor p of n, since you
don't know p. But provided that p — 1 has no big prime factors (in which case it is sometimes called
“smooth™), you might choose for r the Icm of all numbers up to a certain bound B. Let’s consider as a
small example the Mersenne number n =2% -1 and B = 3000.

67
n == 2 -1

LCM{[2. .... 3888]}»

» o=

) o
GCD{MOD{3 . n) — 1, n) = 193787721

3 2
FAGCTOR{123787721 — 1) =2 -3 -5-67-2677

The last line shows why we have been successful: The prime factor 193 707 721 of n, which we found,
has no prime factors larger than 2677!

There is no need to give here area implementation of the (p — 1)-method. For one thing | have done
this on other occasions (cf. [5]), and for another it is already available in DfW5 as part of the built-in
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FACTOR( ). It must be said though that for a big prime p the chances of p — 1 to be smooth are very
gim.

There is adso a (p + 1)-counterpart of the Pollard’s (p-1)-method which uses Lucas sequences and is
very successful, whenever p+1 or g+1 are smooth. You can find a program for it in [5] and it is aso
described there in more detail. Again it has become a part of the built-in FACTOR( ) by now. For
example, try to factor the 89-digit number

177 MR P ET IS IR A 23R PATERE 72 7AMREE A SR44IITS SAZZ IR ATE I AZ2 4T F4FRA1L 922 TF247
by applying FACTOR() to seeit at work!

As for the encryption, it is advisable to take a small e in order to speed it up. The smallest possible
valuefor eis 3, of course, and it is perfectly okay aslong as you take some precautions. For example, if
the decimal number m, which you get after source coding, has less than one third of the digits of the

modulus n, then ¢ = m*mod n would be the same number as m®, i.e. you get m back by simply
computing the cubic root of ¢! Hence, m should always be padded to have about the same length as n.

Another danger is involved, if you send the same message m to at least 3 recipients. Suppose that an
intruder could get hold of three of the ciphertexts c,,c,,c, with the corresponding moduli n;,n,,n,.

Since
c=m’modn ,i=123
we seethat x = m® isthe unique solution in the range 0< x < nn,n, of the system of congruences
X=c¢modn,i=123.
But this solution can be computed by applying the Chinese Remainder Theorem, that is in Derive by
caling CRT([c,,c,,¢;] [ n.n,,n]). The antidote is again padding of m, this time with random digits,
which should be generated for each encryption independently.

Asfor d, it isclear that it shouldn’t be extremely small otherwise one could find it by trial and error. In
fact, if the decryption exponent d has loosely speaking less than one fourth of the digits of n (cf. [1] for
the details), then you can find it (or another suitable d) among the denominators of the convergents of
e/n. (Unfortunately | have to assume here that you are familiar with the basics of simple chain fractions
and their rational approximations called convergents.)

Look at the following emulation in Derive. We first called our routine RSA_init(k) with k=70 (again k
is so small only to save space!) and then exchanged e and d in order to fulfil our assumptions. As you
can see, our new d is actually among the denominators of the convergents of e/n as predicted.
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REA_init{78) = ok
e = G5537
d = 26A5B4566323984181233
[& == FAASHACGRGIZIAVHAIEI233, 4 = BLLIY)
EDHUEHGEHIE'L. 13]
i
a i k] 16 BTy W 1484 4933 1626 21144 24874
I 17 " om " ie? T 2iwe T 4365 15293 T SER44 0 65537 PI1G1
As we have seen d should be large (usualy the size of n) as opposed to e. As consequence the
decryption (and the generation of signatures, where d is used as well) is considerably slower than

encryption, even though the “Square and Multiply” method used for modular exponentiation is
incredibly fast, as we have seen.

Therefore, mathematicians were looking for means to speed up decryption (and the generation of
signatures) even further. It turned out that one of the most efficient tools on that score is again the
Chinese Remainder Theorem.

Suppose that Bob wants to sign the number s with his private key d by computing s* mod n.
Obviously, he could also compute s° mod p and s” mod q first and then combine these results using the
Chinese Remainder Theorem to get s° mod n. As for the computation of s*mod p and s” mod g, again
Fermat’s Theorem comes into play: Since s =1mod p and s®*=1mod g, we could compute the

much simpler, but equivalent expressions s* mod p and s™ mod g using the precomputed values
d,:=d mod (p-1) and d, :=d mod (g-1).

Now let’s modify our RSA _init(k) accordingly:

RSA_CRT _init{k) :
Prog
REA_init (k)

dp == MOD{d, p - 13

dg := MOD(d, g — 1)

a == MOD{q™(p — 2). p}
hk== MOD{p™(q — 2. o)
L1}

[P :=. g ==, n ==, e ==, d ==, dp ==, dgq ==, a ==, b =]

And hereis an example, where n has 1024 bits, and sis any number < n that is to be encrypted with the
private key d to get the digital signature.

REA_CET _dndit{1824} = ok

114432771 2R4TAS54AT7T PRI A4ZFA5 21 1 PS5 4RS FAATRGE 7973425827 TSA1GE 2T TIZATTIASB44RRA 22 R I2R™
EPR2FIAPS IS 42 IR IR TRIIZTI VTR FAEE F 4T AT 181 1P IBGIE4D2ZOBE JGIARERATH1 2841 8 F4B5RI5™
J4RGES 22 ASBE IRASRLAZE IS IR D424 1 9L P06 4770 FIL PLAE T2 T4 7771 4449 PO T2 LOEZ 41 R GAT77R 4872~
LW U e L R RS e bR T S R L L L R e

Wiesenbauer: Using Deriveto Explore the Mathematics Behind the RSA Code Page 17



o

Contents

Fourth International Derive T1-89/92 Conference

d
HOID{s . mn}
HEAHE L L SE VS LS SHEE PS4 2RI B A ISR ARSI PR b e VLA 2 AR R S AL AT L S A T A2 B 45
HESAYHEI 1 YA E 441 BEHANS 1 329440 142501 A B a7 Se e 31 A6HA P 2 1 HEF Y2 3R V1 R YHL B Y1 T™

FAEAL I BV PEIL IR A ITINEE AR TAYRL PV VEZEAAZEA4] ZRA3TI 2261 238 T 6 VR IAAFHENT L 2TIASEZ I H1 0T
PRSZELAZTISASTRRT M PI4RI46 042 1 FIRTIATAL TR TFAS5E

dp dy
HOO{a HODYs . ph-g +« bh-AOD{s . ) -p. m}
HEZBARTILEEE P AATAAS FINSSARATE 34 ZRA31 6 3SR AN T 12 TR A 36 M 224176 YRS 44371 WSS N4 2 B s 4357
ARSAFRAI 1S P4RZ IPE 4421 BARAASA 32799 44R 425 TR 241 B TIPSR PRI 1 46R4 71 Z 1 ARSI 23R BRIASER DI §™

FI6A5 T B FPETE G FAIIFILEEGATALAY IR VS IRAITSA4 ZR4ITI2PI61 2 IRTLE TG I44F5BEF1 2 TIASAZ 181 8™
PELZES2IFLOLSPRET T I4RI46 042 1 FIETIATAL AL TFA55E

As expected these results coincide, but the second computation took only 0.04s on my PC (vs. 0.14s for
thefirst), i.e. it isfaster by afactor 3-4.

When using the Chinese Remainder Theorem in this way, you should be aware of a certain risk though.
If exactly one of the exponentiations mod p or mod q failed for some reason (as an intruder you could
try to provoke such a failure e.g. by exposing a computer chip to x-rays!) , then the recipient, who
knows the correct signature could easily compute the secret prime factors of n!

Let’s assume for example that the exponentiation mod p failed, which we emulate by applying the
RANDOM-function to the regular outcome.

dp dy
£ = HOD & -BAMDOM{MODS s . pid-g = Hh-WOD{e ., 4)-p. )

ZETHAZ1SEIG1IBEZTEFREATEARTIA7PRAIASEFITIRAZIS 2 3F 725 44BER T I0 P2EATLRAFAASEDRBASTEIAZL 31 PR
GPPA1 437 E6F 47Tl E TF TR TSR ATl AR L IEEA TS VATIVEG VI MRS I L FAAS6E TH I 1 PERT1 24653 FEIL™
BBz E2EASEL SELLSAEI4TE2 4IPS FOAGE IR TPH6EE T T IGEGE D61 L4205 T I8 11 00225 TEL 4048 F 18E FAE 8T
IH4RTIYEE R I TEHEIL AT ST VO VIV ITHIT P24 LG

But then g = gcd(s — mod(t°®, n),n) asthe following computation shows:

GCD{= — HOD{tE, n), n} — g =8

The remedy is clear: The sender should check himself, whether s = mod(t®,n) really holds, before
giving t away. Since e is small, this check isvery fast.

A lot more could be said about RSA, but | hope | have aready succeeded in showing the very special
flavour of this cryptosystem, which involves so many fundamental and beautiful mathematical ideas. In
particular, | hope you enjoyed the Derive programs as much as | did when | wrote them.
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