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The T1-89 in conjunction with the CBL2 allows you to collect data and then to analyse it
with standard statistical curve fitting tools. As an introduction to curve fitting tools we
look at data collected from a temperature probe. An example is shown below. For the
first screens the column on the right is time in seconds, the second is the temperature of a
cooling body, and the third column is this temperature less the ambient temperature. A
data table and its graph of information collected from a temperature probe that had been
immersed in ice water and the grasped by the finger tips for 19 seconds recorded from 1

to 20 are displayed below.
Time| Temp.,| Time | Temp.
1 3.0 11 19.61
2 6.01 12 20.29
3 8.66 13 20.86
4 10.95 14 21.42
5 12.80, 15 21.87
6 14.49 16 22.33
7 15.79 17 22.77
8 16.96/ 18 23.11
9 17.89 19 23.45
10 | 18.81 20 23.78
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We display below the polynomial and regression coefficients and the function graphs for
linear, quadratic, cubic, and quartic the regression as computed on the TI-89.
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Although these tools can develop good models, they do not give the modeler much in-

sight into why the resulting models work.

Building a Model Using Difference Equations

Difference equations can be used to develop models based on natural principles that give
more insight into the phenomena that we are investigating. An underlying idea that can

be used in develolping such modelsis:
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Future = Present + Change
This equation can be rendered as:
u(n) =u(n-1) + change
using the T1-89's SEQUENCE feature where
change =k [{AmbTemp —u(n-1)
We develop this model for the temperature probe data based on the idea that the change
in temperature is proportiona to the difference between the current temperature of the

probe and the ambient temperature of the room.

For the temperature probe data where the ambient temperature was known to be 28.6
degrees centigrade, we have the following equations:

u(n) =u(n -1) +k [(28.6 —u(n-1))
There are several ways of estimating k. Algebraically, we have that

K= u(n) —u(n-2
- 286-u(n-1)

Values for k can be computed in the data table using a user-defined forward difference
function (fd(list=shift(list,1)-list) as shown in the left display below.

Fi-| _ FE FE [ F4 |FE |FBFF Fi-| _ FE FE [ F4 |FE |FBFF
Touls|Flot Setup|Ce1|Header[Cale utﬂlstutl Touls|Flot Setup|Ce1|Header[Cale utﬂlstutl
DATA DATA

cl CZ h cZ []
1 1 .01 [.11723 1 .01 [.11723. 08391
2 2 E.01 11731 2 = ab} 11731
3 3 8.66 [.11484 3 .66 [.11484
q 4 10,95 [. 10482 q 10.95 |. 10482
cE=fdic? (P8 6—cdd cd=meanicIEd
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Note: Thelast valuein c3 is undef.
This value must be removed by unlocking
c3 and then deleting the undef entry.

We may chose to average the values of in the ¢3 column as shown in the right hand
display above. We display below the difference equation with initial value on the left and
both the graph of the temperature probe data and the graph of the difference equation
(black squares) on the right.
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As we mentioned before, there are several other methods for determining k. Let’s
explore some of them together.

Wor kshop Exercises

1. Arethe 19 datatable values of k about the same?

2. What factors do we need to take into account in estimating k?
3. What other methods for estimating k are possible?

4. Which method is best?

We can compare the difference equation model to the polynomia models developed
using curve fitting methods.

Wor kshop Exercises

1. How do the regression models compare with each other and with our
difference equation model ?

2. Which method is best and why?

From Discreteto Continuous
(from Joseph Fiedler of California State Univer sity)

We now look at moving from our recursion formula (difference equation) model toa
differential equation model. In the temperature probe data, the recursion for one second
IS

u(n) =u(n -1) +0.084 [(28.6 —u(n—-1))

Define f(u) =u +0.084 [{28.6 —u(n-1)) . If we halvethetimeinterval, then we would

like to have two applications of the function (1/2+1/2 = 1 in the recursion process) to
have the same result as one application of the original recursion formulawhich is based
on atimeinterval of 1 second.
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Solving the f (f (u)) =u +0.084 [(28.6 —u(n —1)) where we have omitted the subscripts
givestwo valuesof k. We canlook at thisin afactored form

factor(f(f(u))-u + 0.084* (28.6-u),u)=0
We can look at the same process for dividing the timeinterval by 2, 3, and 4.
factor(f(f(u))-u + 0.084* (28.6-u),u)=0
factor(f(f(f(u)))-u + 0.084* (28.6-U),u)=0
factor(f(F(f(f(u))))-u + 0.084*(28.6-u)=0

etc.

We begin to see a pattern.
(28.6-U)* ((1-k)"2-1+0.084 = 0
(28.6-U)* ((1-k)"3-1+0.084 = 0

(28.6-U)* ((1-k)"4-1+0.084 = 0
etc.

The general formula for the roots might be proved by induction using the T1-89 if you
should desire. Consequently, the constant for the time 1/n, i.e., niterations per second is
asolution to the equation

(1-k )" =1-0.084
or
k, =(1-0.916"")

It isinteresting to note that when we compute k,, for n even, we get two roots. For the
sequence u,,, the larger root in each such pair of roots gives alternating convergence to
28.6.

To begin the transition from the discrete to the continuous, we now reinterpret the
recursion formula as a difference equation. We recall that

u, =u, , +0.084(28.6-u,_,)

or
u, -u,_, =0.0840(28.6-u,_,)
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and we can write
Au =Kk, [(28.6—u)

Dividing both sides of this equation by the changeintime, , gives

Kn
Au Kk
— =—"1_[{28.6—-u
At 1/n 1 )

For time step 1/n, the appropriate coefficient of (28.6 —u) isgiven as

1-0.916Y"
K,=———
1/n

So therate of changeis

Au _1-0916""

At 1/n 1286-u)

Asn - o, wehavethat Kk, — K , the coefficient of (28.6 —u)in the associated
differential equation. Thus, we take the limit of

1-0.916Y"
1/n

as n approaches co with the TI-89 to compute k . The value of
limit((1-0.916~(1/n),n, )

is approximately 0.088. Of course, this computation uses I'Hopsital'srule. And so we
have,

du
— =0.088 [{28.6 —
" [{28.6-u)

is the continuous equivalent to the recursion formula. Thus, we have completed the
transition from the discrete model to a continuous one.

Y ou may wish to look at how this model fits the data.
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The Continuous Case — Differential Equations

We can make the transition from the difference equation to the differential equation
(Newton’s Law). The following screen shows the Differential Equation solver that is
available on the T1-89 and TI1-92 plus calculators
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The screen shows a genera solution for Newton's Law of Cooling. The first equation
assumes no initial condition. For the second application we assumed that y(0) =r.

To develop the equation for our particular situation, we will look at a sequence of
difference equations and the sequence of associated k values for smaller and smaller time
intervalsto arrive at an estimate for the constant, k, in the differential equation.

We work on this development together in the workshop.
Modelling Populations (Using What We L earned From the Heat Equation)

We look at the more complicated situations involving population. We will start with a
data set that you will be given and develop the models starting with the difference
equation model and working to a differential equations model.

Moving on to L ogistic Growth and Harvesting

Let’slook at a population that is living in a situation of limited resources. Thisis model
that was developed by Volterra and refined by the mathematical biologist, Lotka in the
1940's and 1950's. The basic assumption of this model is that a population grows at a
rate proportional to its' present size (the standard assumption), but this growth also has an
inhibiting factor that is proportional to the number of pairings within the population that
are competing for the resource.
population growth = k* population size — c* competition

If we let y(t) denote the population size at time, t, then the first term on the right is given

by
k*y(t)
As we mentioned, the second term is determined by the number of pairings within the
population, or
ox YO* (v() -1)
2
Gathering like terms, we arrive at the following, generaly well known, equation

y =a*y(t)* (1—@)
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On the left we show this solutionwitha=1,b=5,r ={0.5, 2,5, 7, 10}, and 0 < t < 20.
Notethat al of the solutions rather quickly stabilize at y = 5.

We now introduce a harvesting factor. This changes our model to:

population growth = k* population size — ¢*competition — harvesting

If we assume the harvesting is at a constant rate, h, the differential equation becomes
U * * t
y =a*yo* -2 -n

Note that two screens are required to show the analytical solution and we ill do not have the
expression fory.
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Providing specific values for the parameters does not make the situation much better. For
example, trya=1,b=5h=1,andr =1.2. There must be a better way.

Numerical Solutionsto Differential Equations

Now we bring the discussion aimost full circle. We begin with a differential equation
model and use a numerical approximation technique. For this workshop instead of using
the Euler, or linear approximation, we will use a version of the Runge-Kutta
approximation techniques. Under the MODE screen 1, item 1, Graph, we choose option
6, DIFF EQUATIONS. In the Y = editor choose F1 option 9, Format. Be sure that
Solution Method is set to RK and that Fields is set to Slope.

There are severa nice things about this mode of display. First note that we can see a
“flow” to the model as a whole. We are not stuck with looking at one equation. This
display has a dynamic character to it.
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At first appearance, the graph seems to be the same as one might expect for the standard
logistic model except that the equilibrium value is a bit lower. It was 5 for the standard
logistic model and appears to be about 3.5 here.

In addition to seeing the flow, we can look at what happens with the model given
different assumptions about the initial conditions. In the following figure, we see curves
fory(0) =12, 1.5, 7,an 10

==
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Now we spot a mgjor difference. All of the solutions behave as expected except the one
for y(0) = 1.2. For that one the population fals off to O, i.e., becomes extinct. We have
made a valuable discovery! However, thisleads to a more important question: how isthe
level that leads to extinction related to the harvesting rate?

We look at this question now. The system is in equilibrium when y'(t) = 0. For our
eguation, this means
y -
a*y*(1--)-h=0
y*( b)

b* h

or y’-by*-b*y+ =0

Solving this symbolically on the T1-89 we have

113 bbb s ey el e e

: gre
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Note that when h = 0, we havethat y = b or y = 0. Thisis the standard logistic model.
For the casewhena =1, b =5, and h = 1 we have that the equilibrium values are at

y = 3.618034 and y =1.3820
Thisis somewhat consistent with our previous investigation.

There is another observation that we can make from the slope field picture of our
equation. The larger of the equilibrium valuesis a"stable" equilibrium. This means that
any initial value for y within a given range of this equilibrium value will tend towards this
value. The other equilibrium value is an "unstable” equilibrium. In this case, any initial
value for y other than one which is absolutely on this equilibrium value will yield a curve
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which tends away from the equilibrium either to the other equilibrium value or towards
extinction.

There is yet one other observation. When h >a7b' then there are no real roots to the

equation. Thus, there is no equilibrium. What happensin thiscase. Whena=1and b =

5, then %b =1.25. Let'sseewhat happensfor h = 1.4 and the same initial valuesfory.

It appears that no matter where we start, the population is doomed to extinction! Thisis
the sad message of over harvesting a population that has limited resources to support its
existence.

Using the Modél for Formulating Strategies

On of the strengths of having a modelling tool is the ability to ask 'What If ? type of
guestions. For example, what if in the tenth year of the decline of the population in the
previous section, we adjust the harvesting rate? Can the population be saved? By what
value should the rate be adjusted? The answers, at least for the model, lie in the realm of
mathematics.

First let's find out what the level of the population is after 10 years. Using F3 - Trace will
give us the answer as long as we have first set the initial condition in the Y= directory.
See the screens that follow.
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Thus, we need to find a value for h so that the unstable equilibrium is less than
2.2529399. Looking at the roots of the quadratic equation, and using the fact that a =1

and b =5, we have
g _ —"25;2‘”‘ < 2.2529399

or
h < 1.2377922614
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Obvioudly, a calculator was used in the preceding computations.

Let's assume that the harvesting rateisset at h = 1.2 whent = 10. In TI-89 or 92 syntax
thisis expressed as:

y' = when(t<10, y* (1-y/5) — 1.4, y*(1-y/5) - 1.2)

The numerical solver handles this type of equation as easily as it handles any of the other,
less complicated expressions.

We store this new equation as y2 in the Y = editor and look at the flow field. We will also
show the status of the population when y(0) = 10.

Modelling Real Data

The following data was gathered between the years of 1932 and 1959 in the Monterey
Bay, California. It concerns the sardine population in the bay. The units are not
individual sardines, but the total biomass of the population and the yearly harvest. We, of
course, could convert these numbers into approximate populations by dividing the totals
by the average weight of asardine. Thisisnot at all necessary.
Year Biomass | Biomass
Pop. Catch
1932 3.824 0.295
1933 3.764 0.387
1934 3.996 0.638
1935 3.136 0.632
1936 1.861 0.791
1937 1.330 0.498
1938 1.324 0.671
1939 1.772 0.583
1940 1.940 0.493
1941 2.709 0.680
1942 2.276 0.573
1943 1.849 0.579
1944 1.389 0.614
1945 0.835 0.440
1946 0.506 0.248
1947 0.524 0.130
1948 0.687 0.189
1949 0.958 0.339
1950 0.973 0.353

Ellis & Leinbach: Using All of the Tools of M odelling: M odelling Populations Page 11
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1951 0.570 0.145
1952 0.554 0.014
1953 0.425 0.018
1954 0.558 0.080
1955 0.425 0.078
1956 0.293 0.047
1957 0.212 0.032
1958 0.281 0.126
1959 0.190 0.059
If we enter this data using the Data/Matrix editor of the T1-89 and plot the result, we have
agraphical display of the data.

HMAlM EAD AUTO FUHC

Obvioudly this data does not have the shape of the solutions to the differential equations
given in the previous section. Between 1935 and 1941 there is a dip in the sardine
population that is not really related to the catch since the population recovers while the
catch remains reasonably stable. The remainder of the graph appears as if it may be
explained by the differential equation model with some modifications. The main
modification is that the rate of change of the harvest is not constant. We will use the
following model for the years 1935 — 1959

rate of change = a*pop* (1- b*pop) — c*catch

This does not ook different from our previous model until we realize that the catch is not
constant. This model is more complicated than our previous model and can not be
solved analytically. The reason is that we do not have a representative function for the
catch and none of the regression techniques will be particularly useful for finding an
approximating function.

Our first job is to approximate the parameters, a, b, and c. we will use the data between
1935 and 1942 to arrive at a least squares approximation to these parameters. The basic
eguation that we will useis:
pop(t +1) — pop(t) =a* pop(t)* (1 -b* pop(t)) —c* catch(t)

=a* pop(t) —a* b* pop(t)? —c* catch(t)

=a* pop(t) — B* pop(t)? —c* catch(t)
Using the Data/lMatrix editor and several matrix commands we can “solve” this over
determined system for a least squares approximation for a, (3, and c. We use the QR-
Method, but that is a subject for another, more advanced, workshop. The values for the
parameters, given our data, are

a=0.142753 3 = 0.044245 ¢ =0.851010
Let’s see how it al worked out.
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Obvioudly, when the model is out side of the range we used, 10 <t < 27, The curves do
not agree. Within the range, we seem to have a fair agreement (not perfect). The model
also tends to be more optimistic towards the end of the period due to the small catch
during those years.
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