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Harmony

A basis for musical harmony is provided by Fourier’s theorem which treats temporally
periodic phenomenon f(t) of period T, as a superposition of simple harmonic oscillations of
successively higher frequencies called harmonics, the successive amplitude An of which in
contrast, decay away, as described by the Fourier series
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where ω is the angular or radian frequency of a fundamental simple harmonic oscillation,
which in terms of the secular frequency ν = 1/T (measured in Hz), is given by 2πν, whilst t
represents time in seconds.

Equation (1) can be expressed in the alternative form
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where the constants in equ.(2) are related to those in equ.(1) by an = Ancos(ε) and
sin( )n nb A ε= − , whilst ( )1tann n nb aε −= −  is the epoch of the nth harmonic.  Furthermore the

coefficients an and bn can be calculated directly with the Euler formulae as
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According to equ.(1), the basic building blocks in Fourier series are the sine and cosine waves,
depicted respectively in Figs. 1(a) and (b), where x is short ωt.

y = sin(x) y = cos(x)

   (a)       (b)
Fig. 1
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Confining our attention to the sine wave, on the understanding that the same basic treatments
will apply to the cosine wave, we graph, in Fig. 2, the corresponding sine waves of double,
triple, quadruple, etc., the frequency of the sine wave in Fig. 1a.

y = sin(2x) y = sin(3x)

y = sin(4x) y = sin(5x)

    Fig. 2

These latter sine waves of multiple frequency constitute the sub-building blocks or harmonics
of a Fourier series.

However, whilst it is mandatory that the frequencies increase in simple whole number
multiples of the fundamental frequency, we are free to adjust the amplitudes of the
successively higher frequency waves in any way we desire.

For example, we might take the original sine wave at unit amplitude, the sine wave of doubled
frequency at half this amplitude, the tripled frequency sine wave at one third of ..., and so on.
The graphs of these reduced amplitude waves, are shown in Fig. 3.

y x= 1
2 2sin( ) y x= 1

3 3sin( )
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y x= 1
4 4sin( ) y x= 1

5 5sin( )

    Fig. 3

The final step, is to superpose these waves, which is simply done by arithmetically adding
them together.

To see the way the composite wave develops, we graph in turn in Fig. 4, the cumulative sums

(i) 1sin( ) sin(2 )
2

x x+ ,

(ii) 1 1sin( ) sin(2 ) sin(3 )
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x x x+ + ,
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2 3 4

x x x x+ + + , etc.

      

y x x= +sin( ) sin( )1
2 2

    

y x x
x

= +
+
s in ( ) s in ( )

s in ( )

1
2

1
3

2
3

     

y n x
nn

=
=

∑ sin ( )

1

4

    

y n x
nn

=
=

∑ s in ( )

1

5

Fig. 4

If in the above sum, the argument x is returned to its original form ωt, then when ν = 66 Hz ,
the lowest component in the Fourier series would be a simple vibration heard roughly as
bottom C in the bass clef as illustrated in Fig. 5.  Furthermore the various sums in Fig. 4
would be heard as musical chords.  The chord for the final entry in Fig. 4 is indicated in Fig. 5.
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Fig. 5

The various tones in the above scheme are variously called harmonics or upper partials, the
lowest tone being dubbed the ‘fundamental’.

Returning to the superposition problem, we show finally in Fig. 6, the graph of the first

hundred terms, namely that of 
100

1

sin( )
n

nxy
n=

= ∑ , of the series under consideration, where we

note that the original wavy character has all but disappeared, to be replaced by repeating
straight line segments, with a slight blip at points of discontinuity, which is a manifestation of
the so-called Gibb’s phenomenon.

 

Fig. 6

The Gibb’s phenomenon persists even in the case of the sum of an infinitude of harmonics
which would look like:
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A similar expansion pertains to the sawtooth wave defined more realistically by
( ) 2 : 2Rf t t T t Tα= < , periodic of period T, with α a constant, which is illustrated in

Fig. 7.

5
4

3

2

1

sin(5ωt) at 1 5  amplitude
sin(4ωt) double octave at 1 4  amplitude
sin(3ωt) tenth* at 1 3  amplitude

octave at 1 2  amplitude of fundamental

sin(ωt) fundamental

ν
4th upper partial

3rd upper partial
2nd upper partial

1st upper partial
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The Fourier series of this wave is given by
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where again ω = 2π/T is the angular frequency of the fundamental wave, defined as before in
terms of the secular frequency ν = 1/T.

Apart from the additional parameters introduced here to give the waveform a more physical
nature together with an algebraic sign, the only essential difference between the waves in Figs.
6 and 7 is that the phases of their respective harmonics differ by successive whole number
multiples of half a period.  However the human ear is apparently insensitive to such phase
differences and so the above wave would sound the same as that described by
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which differs from y in equ.(3) essentially only by a multiplicative constant.

The amplitude magnitude versus frequency behaviour* of a given wave, which in fact defines
its timbre, can be summarised by a bar chart of the type indicated in Fig. 8, whilst Fig. 9
attempts a musical realisation of this chart, when 1 66T Hertzν = = .

                                                
*More realistically the quantity 20log10|amplitude| might be plotted against frequency.

t

f(t)

Fig. 7

T/2 T 3T/2 2T 5T/2
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Fig. 9

It is important to note in the above scheme that the eleventh harmonic is sharper than we
might otherwise expect [1,2].  Brass players can test this in an appropriate key, by ‘lipping’
the harmonics usually  up to the eleventh, on a fixed valve position (trumpet or cornet etc) or a
fixed slide position (trombone) assuming they start on a low enough note.*

It is left as an exercise for the reader to construct corresponding schemes for the square and
triangular waves, defined as the periodic continuations of the respective origin centred
representatives:
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for which the corresponding Fourier series are respectively
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These series indicate that the even harmonics in the above waves are missing, which imparts a
rather reedy sound to the resulting timbres.

                                                
*Bottom F# on the trumpet (i.e. concert E).

ν =
1
T

1/2
1/3

1/4
1/5 1/6 1/7

1/8 1/9 1/10 1/11
1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 8

ν
µ

#

Frequency 66 132 198 264 330 396 462 528 594 660 726 792 858

1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

1

1/11 1/12 1/13

}
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Composite waveforms

According to the above, though the oscillatory motions of a vibrating object may be quite
complex, it turns out that these oscillations may be analysed into a sum of simple harmonic
oscillations, the pattern of which, as mentioned above, determines the timbre of the sound it
emits.

Thus when a guitar string is plucked, the motion of the entire string is made up of a whole set
of simpler vibrations.  The maximum distance the string deviates from its equilibrium
position, depending on how hard the string is plucked, determines the amplitude of the
vibration.

If the simple back-and-forth motion of the vibrating source were the only phenomenon
involved in creating sound, then all vibrating components of a given kind - like those in
musical instruments -  would probably sound much the same.  However it turns out in the case
of the guitar for instance, that a given string not only vibrates at its entire length, but also at
one-half its length, one-third, one-quarter, one-fifth, and so on.  These additional vibrations
respectively occur at twice, three times, four times etc. the frequency of the full string length
vibration, but with generally weaker amplitudes.  Importantly each of these sub-vibrations,
including the fundamental one, can be described by sinusoidal functions of time.

Thus the displacement of a guitar string with time can in fact be viewed as a superposition of
sinusoidal waves of successive whole number frequencies, the amplitudes of which however,
due to friction, decay exponentially with time, until that is, the string is plucked again.

For a plucked string of length !, fixed at both ends with initial profile:

: 0
( ,0)

:

bx x
u x xb x

ξ ξ

ξ
ξ

≤ ≤
=  − ≤ ≤  − 

! !
!

, ...(6)

illustrated in Fig. 10,

Fig. 10

a simple model for the subsequent displacement u(x, t) of the string at station x and time t, is
provided by the wave equation

u(x,0)

b

ξ !
x
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where c T σ=  represents the phase speed in terms of the tension T in the string and the line
density σ of the string.

The solution to the above equation, which is
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demonstrates that in the case of a plucked string
(i) the harmonics fall as 21 n ,
(ii) the amplitudes of the composite tones increase as the plucked point approaches either end

of the string - in the case of the guitar this would preferably be the bridge end,

(iii) any particular harmonic vanishes at a node, where sin 0nπξ  =  !
.

In the case of the piano, the strings are struck with a hammer of thickness ε imparting an
initial velocity to the string, a profile which is given by
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For this case the solution of the wave equ.(7) becomes
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For a thin hammer this can be modified to
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Comparing this solution with that of the plucked string, we see that the upper partials are
stronger in amplitude, falling off as they do in proportion to 1 n  instead of 21 n .

The fundamental angular frequency of the above waves is ω = σc/!, whilst the frequency of

the gravest mode, occurring for n = 1, is 12
2

Tcν
σ

= =!
!

, which according to Mersenne’s

laws,* corresponds to the note we think we hear.

Waves on strings like those the above, can be observed by switching on a television in an
otherwise darkened room and holding a guitar in such a way as to view the guitar's strings
                                                

*The period of vibration would be 2! σ T .
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with the television screen in the background.  The television screen acts as a stroboscope,
picking out low alias vibrations of a plucked string which can be seen as visible waves,
superimposed on the vibrating guitar string.

It is important to note however that the waves do not travel along the string, which may be the
impression conveyed by the above stroboscopic test, since as indicated by equ.(8), the sections
of the string oscillate as standing waves.  This means that at certain equi-spaced points along
the string, the motion is stationary.  At such a point the corresponding harmonic may be
sounded by simply touching the string, rather than fully stopping it with the full pressure of
the player’s fingers.

String players use this effect to play harmonics and furthermore to tune their instruments.

Thus a double bass player can, with the bow sound on the G-string, the octave of the D-string,
by touching with the little finger the 1/3 node on the G-string, whilst at the same time
sounding the same note on the D-string by touching its quarter-way node with the index
finger.  Drawing the bow across the two strings so constrained simultaneously, sounds both
notes together, whence they can be fine tuned relative to one another.  This process can be
repeated to tune the remaining strings.

Given that the strings of the double bass are tuned in fourths from bottom E upwards, it is left
as an exercise for the reader to figure how cellists might correspondingly tune their
instruments given that the strings of the cello are tuned in fifths starting from bottom C;
likewise for the violin whose strings are tuned in fifths starting from bottom g.

The oscillation of the vocal folds in voice production is governed essentially by an
aerodynamic phenomenon in which the vocal folds are first sucked together - according to the
Bernoulli effect - by air escaping from the trachea - after which they are blown apart by the
accumulated air pressure underneath - depending on the muscular effort [3,21].  The resultant
waveforms describing either aerial velocity or glottal area can be successfully modelled by a
triangular wave which is a periodic continuation of the origin centred representative plotted in

Fig. 11, of the form 
1 | | : | |

( )
0 : | | 2
t t

g t
t T

α α
α

− ≤
=  ≤ ≤

, where T is the period of vibration of the

vocal chords, whilst α is the fraction of a period for which the glottis is open during a given
cycle of the vibration.  We might thus call α the opening quotient.

Fig. 11

Plots of the periodic extensions of the above function for, a hypothetical period of T = 2π
(although realistic vocal chord periods would be typically hundreds of times shorter than this),
catering for the cases in which (i) α = 5π/6, (iii) α = π/2 and (iii) α = 5π/2 are given in Fig. 12.
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 α = 5π/6      α = π/2

α = 5π/2 (falsetto effect)
Fig. 12

Given that the periodic extension of g(t), is periodic with period T = 2π, its Fourier expansion
is given by

2
1

1 2 1 cos( )( ) cos( ) .
2 r

rg t rt
a r

α α
π

∞

=

 −  = +     
∑ ...(12)

It can be seen from the above graphs that a decrease in α makes the graphs more pointed
which strengthens the upper partials, so that more energy goes into the higher frequencies with
a consequent increase in power output.  Practised singers tend to have stronger upper partials
in their vocal timbres.

Clearly in the production of low notes by the above effect the vocal cords are more relaxed
than in the production of higher notes, when the vocal cords would be expected to be under
greater tension.  The larynx does in fact rotate upwards when higher notes are sung, as can be
sensed by gently placing the index finger on the Adam’s apple when singing an octave.

If we modelled the vocal frequency on the formula 1
2

Tν
π σ

= , we might expect a

quadrupling in the tension of the vocal cords in elevating a sung note by an octave.

Further increase in frequency can be produced by adducting the vocal cord - the so-called
break - or perhaps by decreasing their mass σ per unit length.  Finally a falsetto effect is
produced by tensing the vocal cords to such an extent that they do not entirely close during a
given cycle, which effect may be mimicked in equ.(12) by increasing α until the triangular
waves overlap as illustrated in Fig. 12.

Formants

The composite waveform due to a vibrating component still does not entirely account for all
the characteristics of sound produced by different instruments.  One further attribute is
determined more by the nature of the resonator to which the vibrating component is attached.
The resonator in fact enhances some of the sinusoidal harmonics describing the vibrations,
whilst attenuating others [21].
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In the case of articulation, the resonator is the vocal tract as schematised in Fig. 13, whilst the
resonances it produces manifest themselves as vowel sounds.

Fig. 13

The dynamics of a single resonator’s behaviour may be described  by the initial value problem
2

2 2
2 ( ) : (0) (0) 0n n

d x dx x f t x x
dt dt

γ ω ω+ + = = =" , ...(13)

where γ and ωn are constants, respectively representing a damping factor and the natural
angular frequency of the resonator, whilst 2 ( )n f tω  is a forcing function.

Equ. (13) is in fact a canonical representation of the dynamical equation
2 2 2

2 ( )
2

d X ck dX c X F t
A dt dt V
ρ ρ ρ

π
+ + =! , ....(14)

which describes the volume displacement of a plug of air, of density ρ, in the neck of length !
and sectional area A, of the idealised Helmholtz resonator of volume V, forced by the function
F(t), shown in Fig. 14, which is perhaps the simplest model with which to start a formant
theory.  Further parameters in equ.(14) are the speed of sound in air, which on the adiabatic
hypothesis is given by 0 0c pγ ρ= , in terms of the equilibrium pressure and density p0 and
ρ0 respectively of the air and γ is its ratio of specific heats at constant temperature and volume.
The quantity k is also included to account for frictional or dissipative effects [4].

XV
!

A

Oscillating
air plug

Fig. 14

Upper teeth

Lips

Lower teeth

Tongue
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A graph of the resonator’s amplitude attenuation and amplification factors versus frequency as
described by equ.(13) say,  is called the envelope, or formant pattern, of the resonator.  These
characteristics may be obtained from the transfer function T(s) of the resonator, which is the

Laplace transform of its impulse response ( )
2

2( ) sintn
d

d

h t e tγω ω
ω

−= , where 2 2 4d nω ω γ= −

is a damped angular frequency, which indicates that damped oscillations are flatter than
natural ones.  This latter function h(t) is in the simplest case, the solution of the differential
equation (13) with its right-hand-side term replaced by Dirac’s delta function δ(t)

Alternatively introducing the hypothetical solution ( ) ( ) j tx t T e ωω= , where 1j = −  is the
imaginary unit, into equ.(13), with f(t) replaced by j te ω , leads to the frequency response

2

2 2( ) n

n

T
j

ωω
ω γ ω ω

=
− + +

, the inverse Laplace transform of which, with jω replaced by s, gives

the stated impulse response.

Laplace transforms can be used to obtain a symbolic solution of the above initial value
problem in terms of a convolution of its impulse response with a given forcing function.

The temporal solution of the initial value problem (13) is accordingly given by the
convolution
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Since we are interested in resonators excited by periodic forcing function, we introduce the
Fourier series of equ.(1), namely
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1
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into the above convolution integral, to obtain the result
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with r = 1,2,3, … .
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The integrals (ii) and (iii) are respectively the real and imaginary parts of the integral
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so that
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Equating real and imaginary parts in the equ.(14) then gives
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Finally r = 0 in equ.(18) above, yields
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Fig. 15 shows graphs of the input and output  based on the above theory, for the case in which the
input is the glottal triangular wave, described by the Fourier series in equ.(12) with coefficients
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0a α
π

=  and 2

2(1 cos( ))
r

ra
r

α
πα

−= , where for test purposes only, the parameters in the input graph are

given by α = 5π/6, and T = 2π.

The output corresponds to that of a damped oscillator with damping factor γ = 0.25 and a natural
angular frequency of test value ωn = 3/2 radians per second.

Input Output

     Fig. 15

From the graph we see that apart from a slight glitch at the beginning of the motion, it
ultimately settles down to a steady oscillation.

An alternative treatment of formant resonance may be conducted by comparing the aerial
dynamics with that of the longitudinal displacement of air in pipes.  If the cross-sectional
radius of a given pipe is small compared with the wavelength, it transpires that the sound
waves may be treated as plane waves, for which particle displacements ξ(x, t) again satisfy the
wave equation (7), where c is now the speed of sound as described in the sequel to equ.(14).

The general solution for a pipe of length !, depends on the boundary conditions.

For a pipe closed at both ends, the displacement ξ(x,t) at station x and time t is given by

(i)
1

( , ) sin sinn
n

n x n ctx t C π πξ
∞

=

   =       
∑ ! !

.

However this is not a practical proposition since in singing the mouth needs to open, except in
the case of humming when the nostrils constitute the open end of a more complex structure.*

Again if the pipe is open at both ends the general solution is

(ii)
1

( , ) cos sinn
n

n x n ctx t C π πξ
∞

=

   =       
∑ ! !

.

Actually the best configuration would be for a pipe open at one end - the mouth - and closed at
the other end - the throat, when the general solution is

                                                
*Apart from nasalised vowels, the nasal cavities are excluded when singers raise the velum, as in a simulated
 yawn, whilst vocalising.
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(iii)
0

2 1 2 1( , ) sin sin
2 2n

n

n x n ctx t C π πξ
∞

=

+ +   = ⋅ ⋅      
∑ ! !

.

The temporal sine functions occurring in the above standing waves are a consequence of
assuming the motion starts from rest, in which open end corrections have been ignored.  The
pitches of the gravest modes in solutions (ii) and (iii) above are respectively given by c/2! and

c/4!, which indicates that a pipe stopped at one end ‘blows’ an octave lower than a completely
open pipe.

For a formant model based on the solution (iii), the successive terms in the expansion for ξ
constitute the resonances of the acoustic tube.

For a tube of length ! = 17 cm, which is representative of a  male-voice vocal tract [22], the
first four formant resonances of a single but fixed hypothetical vowel type sound, may be
tabulated as in table 1 below.

Formant n ! ν ! = 17 cm

F1 0 0 4λ c/4! = 500 Hertz

F2 1 3/4 λ1 3c/4! = 1500 Hertz 

F3 2 5/4 λ2 5x/4! = 2500 Hertz 

F4 3 7/4 λ3 7c/4! = 3500 Hertz 

Table 1

The fact that pressure is related to particle displacements by 2p c
x

∂ξρ
∂

= −  enables us to

illustrate the above data by means of the corresponding pressure profiles in Fig. 16 on the
following page.
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It is nice that such an elementary model of the vocal tract as the acoustic tube capably predicts
formant frequencies of the right sorts of magnitude.

Perhaps a model based on Webster’s horn equations incorporating a variable cross-section for
the vocal cavities might be effective in allowing for variable vowel sounds [26].

In such a case the displacement variable ξ needs to be replaced by the variable X/A, where X
represents the volume and A the cross-sectional area of the vocal tract at station x and time t.
Introducing the ‘variables separable’ expressions for pressure p and X, namely ˆ ( ) j tp p x e ω=
and ˆ ( ) j tX X x e ω= , into Webster’s equations, leads to the spatially dependent equations:

(i) 2ˆ1 ˆ 0d dpA k p
A dx dx

  + =  
, and (ii) 2

ˆ1 ˆ 0d dXA k X
dx A dx

 
+ = 

 
, with 

2 ˆ
ˆ c dXp

A dx
ρ= − .

These equations are furthermore subject to the compatibility condition
2 2

0( ) cosh sech ( )xA x A
h

β β = +  
, where β, h and A0 are constants [18,19].

The third and fourth formants are weak compared with the first two, so vowels can be
effectively distinguished by their first and second formants.  These are called the base and hub
respectively.  Vowels with widely separated base and hub may be classed as bright and are
called front vowels since the tongue-hump is located towards the front of the mouth.  Vowels
with moderate separation of base and hub are produced when the tongue-hump is towards the
middle of the mouth and are called central vowels for this reason.  Placing the tongue-hump
towards the back of the mouth produces the dark vowels with base and hub closer in pitch.

A guide to the characteristics of vowels may be obtained from the scheme below.  The
musical entries correspond to the average frequencies of the base and hub of a given vowel.
Below each musical entry is a picture of the sort of output one would expect from a speech
spectrograph, together with a diagram depicting the position of the tongue in the production of
the vowel.

Fig. 16
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Fig. 17

It is customary to plot the hub against the base frequency-wise, for different vowels, as
indicated in Fig. 18.  This plot can be used to indicate the locus of tongue-hump movements in
articulating the various vowels, as depicted next in Fig. 19 [23].

Diagrams such as the above have applications in speech therapy for the deaf [24,25].

It is instructive to conclude this section by pointing out that adiabatic formula 0 0c pγ ρ= ,
for the speed of sound in air, predicts that warm wind instruments will play sharp, since the
density of air in such cases will be less than that for a cold instrument.  This means that the
speed of sound will increase with the warmth of the instrument.  At the same time c = νλ ,
where λ is the wavelength (which stays constant with the length of the instrument)* and ν is
the frequency of the sound, it follows that the frequency must increase with the warmth of the

                                                
*The coefficient of linear expansion having negligible effect in this case.

High
back

Low
back

Low
front

High
front

Fig. 18 Fig. 19
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instrument.  This effect can in fact be quite significant, as for example for a wind band playing
on a hot summer’s day inside an even hotter marquee tent; when the instruments require
careful retuning by mechanically increasing the length of each instrument according to design.

In fact even initially cold instruments warmed by the player’s breath become noticeably
sharper.

Sound and Transmission

When an object vibrates, it induces the molecules of the surrounding air to oscillate back and
forth in sympathy.  If ε denotes the molecular displacements from their equilibrium position
and t is time, the equation of motion of their macroscopic continuum, on the adiabatic
hypothesis, is a non-linear wave equation of the form

12 2
2

2 2 1c
t x x

γ∂ ε ∂ ε ∂ε
∂ ∂ ∂

+
 = +  

, ...(23)

where c is the speed of sound in air, as previously described.  A second order approximation
to the above non-linear wave equation in equ.(23) above is

2 2 2
2 2

2 2 2( 1)c c
t x x x

∂ ε ∂ ε ∂ε ∂ εγ
∂ ∂ ∂ ∂

= − + ...(24)

for which a particular solution is

( ) ( )( )2

2

1 S
4

f t x c x f t x c
c

γε += − + − , ...(25)

where ε = f(t) is the wave profile at x = 0, [4].

Substituting the simple combination

( ) ( )1 1 2 2( ) cos cosf t a t a tω ω= + ...(26)

into equ.(23) demonstrates the existence of frequencies equal to the difference, sum and
octaves of ω1 and ω2, with amplitudes proportional to the squares and products of the original
amplitudes a1 and a2, showing that these derived tones increase in relative importance to the
parent tones.

This supports the idea that additional tones are created in the transmission of harmoneous
sounds.

Sound detection

When sound waves enter a listener’s ears, they impinge on the ear drums which are made to
vibrate in sympathy.  The restoring force on the ear drum in being displaced a distance x from
its equilibrium position by a given wave, takes the form

2 2F x xω α= + , ...(27)
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where ω is a representative angular frequency of the aerial waves comprising the vibrations
and α is a small constant.  The vibratory motion of the ear drum is thus described by an
anharmonic motion equation of the form

2
2 2

2

d x x x
dt

ω α+ = − , ...(28)

where x may be regarded as the displacement of the drum from equilibrium and t is again
time.  Assuming the initial zero order approximation

x = x0cos(ωt) ...(29)

in the face of the initial conditions x(0) = x0 and (0) 0x =" , it can be shown via perturbation
methods [6], that a solution to equ.(28), correct to the second order in the small quantity α, is

( )

( ) ( )

2 2 2
0 0 0 0

0 02 2 2 4
0 0 0 0

2 2 3
0 0 0

0 02 2 4
0 0 0

1 291 cos
2 3 3 144

1 cos 2 cos 3 ,
3 2 3 48

x x x xx x t

x x xt t

α α α α ω
ω ω ω ω

α α αω ω
ω ω ω

   
= − + + + +   

   
 

+ + + 
 

...(30)

where 
2 2

2 2 0
0 2

0

5
6

xαω ω
ω

= +  [5-11] ...(31)

In this we see that the amplitude of each harmonic component depends on the frequency of
that component, which is typical of non-linear systems.

An analytical solution to the above initial value problem in (27) and (28) can be found in
terms of Jacobian elliptic and hyperbolic functions.  In pursuit of this solution it is expedient
to first non-dimensionalise equs. (27) and (28) by replacing the displacement x by 0x x  and

time t by ωt, when the equations become 
2

2
2

3
2

d x x x
dt

ε+ = − , and x(0) = 1, where 0
2

2
3

xαε
ω

= .

The analytic solution is then [13,14]

( )2 21 2,x Q sn P t Q Pε= − ,* ...(32)

where (i) 2
21P x= − , (ii) 2

11Q x= − ,

with x2 < x1 being the zeros - always exceeded by unity - of the quadratic expression

2 1 11 1x x
ε ε

   + + + +      
.

                                                

*or equivalently x PQ

cu PQ t
P Q

PQ

cu PQ t
P Q

PQ

= −

−
+









+
+





























1

1
2

1
2

ε

ε

,

,

, [15].
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Plots, for various values of ε are shown in Fig. 20.

5 10 15 20

-4

-3

-2

-1

1 ε =0.2
ε = 0.1
ε = 0.001

ε = 1/3

ε = 0.35

ε = 0.4
Fig. 20

These plots indicate that only when 1 3ε <  is the solution oscillatory, with a fundamental
angular frequency given by

0 P Fω ε= , ...(33)

where

2 2 4 6
2 1 1 1 1

1 1, ;1; 1 4 9 64 25 256
2 2

F F k k k k = = + + + +  
#  ...(34)

is a hypergeometric function.

When 1 3ε =  the solution reduces to ( )21 3 tanh 2x t= − , whilst for 1 3ε >  the solution
becomes unbounded.

The periodic solution for ε < 1/3 in equ. (32), can accordingly be expanded into a Fourier
series, which, on returning to the original dimensional variables, takes the form

( ) ( )
2 2

1
0 02 2 2 2

1

8 cos
1

n

n
n

Q F F Q nqx x n t
k F k F q

ω
∞

=

−
= − +

−∑ , ...(35)

where K Kq e π ′−= , in terms of the complete elliptic integrals 
2

K Fπ=  and 12
K Fπ′ =  of the

first kind, where

2 2 4 6
1 2 1 1

1 1, ;1; 1 4 3 64 5 256
2 2

F F k k k k = − = − − − +  
# . ...(36)

If the various parameters in the above Fourier series are expanded as infinite series in ε, the
equations (29) and (30) emerge as second order approximations to the solution for ε < 1/3.*

                                                
*See also [16,17] for more on the anharmonic motion equation.
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The above analysis suggests that the tympanic membrane invents additional virtual harmonics
of slightly lower frequencies in its oscillatory response to simple tones.  These vibrations are
subsequently transmitted via the oscicles of the inner ear to the cochlea, where oscillatory
motions are induced in a fluid, the various frequencies of which are detected by sensitive hair
cells, which provide a mechanism for converting the vibrations to nerve impulses, to be
ultimately interpreted by the listener’s brain as sound.

It is interesting to speculate that the solution for ε > 1/3, being unbounded, indicates that the
anharmonic motion model predicts the possibility of damage to the ear drum for ε in this
range.

Normal hearing requires the lowest frequency of vibration to be at least 20 Hz, whilst the
highest perceptible frequency is of the order of 20 kHz.  Actually, the ear senses the intensity
(power per unit area) of a sound wave, rather than just the amplitude, where the sound
intensity of a given wave is proportional to the square of the product of its amplitudes and
frequency.

Scales

Melody derives from the fact that the human ear perceives a doubling of an oscillation’s
frequency as an octave.  Hence by a simple fractioning process based on halving or doubling
the various individual frequencies present in a Fourier series, with no regard to the amplitude,
melodic sequences of notes can be produced which can be given greater variety by varying the
duration of each note within the sequence.

The orchestral tune up note of concert A, indicated in Fig. 21, is defined to have a secular
frequency of 440 Hz.

Fig. 21

Doubling the frequency of a note puts the result one octave (Ω) above.  Thus 888 Hz, as
shown in Fig. 21, is one Ω above concert A.

Likewise halving the frequency gives a note one Ω below, whilst quartering the frequency
makes a note 2Ω below etc., as also indicated in Fig. 21.

Since the secular frequency is the reciprocal of the period T, we see that the period of concert
A can be obtained by setting 1 440T =  Hz, whence 1 440T =  sec.

880 Hz is one octave above

440 Hz  is concert A

220 Hz is one octave below

110 Hz is two octaves below

55 Hz is three octaves below

µ
ν














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Furthermore the angular frequency of concert A would be ω = 2π × 440 = 880π rads per sec;
not to be confused with 880 Hz, which is the secular frequency of the note one octave above
concert A.

The corresponding simple vibration of unit amplitude for the pure concert A tone would then
be given by y = sin(880πt).

This is a very fast oscillation to plot graphically and if we are not careful in our choice of the
time interval for the plot, we just get a black smudge as indicated in the left hand graph of
Fig. 22, where the duration of the oscillation - call it a time window - is π seconds.

       Fig. 22

To get a better picture we must reduce the time window to a duration of say, 1/55 sec, when
we get the recognisable sine curve in the right hand frame of Fig. 22 above.

Let us now indicate more of the successive harmonics obtained by doubling, tripling and
quadrupling the fundamental frequency of 66 Hz as in Fig. 23, together with the various other
attributes and graphs etc., associated with these harmonics. *

 Fig. 23

                                                
*Jazz musicians familiar with guitar chord symbolism will recognise that the spread of harmonics up to the
 eleventh, in the key of C, is nothing more than C9 sus 11+.
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By continually halving the frequency of an appropriate tone in Fig. 23, we can place the
resulting tone in the same register as that of the fundamental frequency, so producing a
diatonic scale.  Four of the six notes in the diatonic scale, i.e. those excluding the keynote and
its octave may be obtained in this way.

Thus the supertonic being three octaves above the 9th partial bears a frequency ratio to the
fundamental of 9/23 = 9/8.  The corresponding ratios for the other notes including the mediant,
dominant and leading note work out similarly to 5/4, 3.2 and 15/8 respectively.  This produces
the justly tuned scale indicated in Fig. 24.

In contrast the diatonic scale is produced if the subdominant and submediant of the scale are
obtained by doubling the frequencies of the notes one fifth and a minor third below the
keynote respectively.  Accordingly the frequency ratio corresponding to a “fifth above” is 3/2,
so the ratio for fifth below is the reciprocal of this, namely 2/3.  Doubling this gives 4/3 as the
frequency ratio of the subdominant.  In the same way the frequency ratio of the submediant is
calculated as 5/3.

The justly tuned scale so refined constitutes the so-called diatonic scale, which is indicated in
Fig. 25.

It is interesting to compare the tuning discrepancies that exist between the various refined

notes and their original counterparts as in the frequency ratios (i) 39
40

just submediant
diatonic submediant

=

and (ii) . 33
. 32

just subdom
diatonic subdom

= .  Further tuning discrepancies are considered in [20].

ν
µ

#

Ω

#
}

} >

#

Initial justly tuned scale

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 octaves (Ω)

1
29/8 5/4 11/8 3/2 13/8 15/8

Fig. 24

ν
1 29/8 5/4 4/3 3/2 5/6 15/8

2/3
4/3 5/3

5/6

Fig. 25
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Although the ratios of the frequencies of consecutive notes in the diatonic scale are of the

form ( 1)n n+  for various whole number n (i.e. the ratio from e to f would be 4 3 16
5 4 15

= ,

musicians tend to talk of whole or half steps (dubbed tones and semi-tones respectively), there
being five such whole steps and two such half steps within the octave.  Again the number of
steps between pairs of successive notes, called intervals, are designated ordinally.  Thus the
intervals between c and e, comprising three whole steps, is called a major third.  Subtracting a
semitone from this results in a so-called minor third.*  Likewise the interval between C and F
comprising three and a half steps is called a fourth.  Adding a semi-tone results in a so-called
augmented fourth, which coincides approximately with the diminished fifth, which is the
interval of a fifth (C to G say) minus one semi-tone.

A notable fundamental refinement which introduces a scale of equal half step intervals, leads
to the alternative scheme in which the octave between 110 and 220 Hz, is split into twelve
semi-tone steps.  This can be done by multiplying the lower tone 110 Hz, by the successive
integral powers of the twelfth root of two.  Better still, multiplying 110 Hz in turn by each one
of the members of the sequence { } { }0 1/12 2/12 3/12 23/12 24 /122 , 2 , 2 , 2 , , 2 , 2nr = # , produces 24
equally tempered semi-tones covering the two octaves from 110 to 440 Hz, as depicted in
Fig. 26, where the numbers inside the semibreves indicate the power to which 21/12 has been
raised to produce the appropriate frequency ratio between the circled note and the fundamental
tone of 110 Hz.

Fig. 26

The corresponding sequence of secular frequencies is then { } { }110n nrν = , whilst the sequence

of angular frequencies is in turn, given by { } { }2n nω πν= .

The sequence of musical notes now corresponds to the scheme { } ( ){ }( ) sin ntone n tω= .  Not
only can these sinusoids in the sequence be plotted by a symbolic package, but they can also
be played by packages like MATHEMATICA.

It is useful at this juncture to note that in the above equi-tempered scheme, the various
intervals previously alluded to, now encompass appropriate numbers of semi-tone steps,
involving no tuning discrepancies arising from the adopted musical path.

                                                
*In the stride piano styles of Teddy Wilson, Fats Waller etc., the left hand often combines the ‘vamping’ of
 chords with a chromatic movement in parallel tenths.
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Syncopation

The duration of notes in a melody may be controlled by means of Heaviside’s unit step
function which is defined by

0 : 0
( )

1 : 0
t

H t
t
<

=  >
, ...(36)

and is graphed in Fig. 27.*

> t

H(t)
1

Fig. 27

The Heaviside step function is an idealisation of a switching function or an ‘if’ statement,
which changes instantaneously but discontinuously, at time t = 0, from 'off' (zero) to 'on' (one).

A time delay of amount a may be introduced into the step function, by writing

0 : 0 0 :
( ) .

1 : 0 1 :
t a t a

H t a
t a t a
− < < 

− = = − > > 
...(37)

This delayed step has the graph depicted in Fig. 28.

> t

H(t   a)
1

−

a

Fig. 28

Subtracting two delayed step functions, gives a pulse, as in

0 :
( ) ( ) 1 : ;

0 :

t a
H t a H t b a t b

b t

<
− − − = < <
 <

...(38)

with the graph indicated in Fig. 29.

                                                

*A more sophisticated definition is: H t
t
t
t

( )
:
:
:

,=
<
=
>







0 0
1 2 0
1 0

 but we will have no occasion to use this.
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> t

H(t)
1

a b

Fig. 29

We can finally set up a sequence of durations by defining, in terms  of delayed Heaviside step
functions, the pulse functions ( , ) ( ) ( )time m n H t mp H t np= − − − , where for a given value of
p, the duration of the pulse will be (n − m)p seconds, assuming n > m ≥ 0.

Melody

The fact that the difference between two consecutively delayed step functions constitutes a
pulse can be used in conjunction with periodic functions like sinusoids for instance, to
construct the mathematical analogue of a melody.

Let us apply the above idea to simulate mathematically, the first three notes of the nursery
rhyme 'Three Blind Mice', say in the key of C.

Rather than invoke the frequencies of Fig. 15 as they stand - implicitly in the key of A major,
we will transpose the entire scheme up to the key of C, by multiplying our original sequence
of frequencies by 3/12 1/ 42 2= , as indicated in Fig. 30.

Fig. 30

The required notes of three blind mice as extracted
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from the scheme in Fig. 30, are shown in Fig. 31.

Defining in turn the elements 1/ 42 110n nrν = × ,
2n nω πν=  and ( )( ) sin ntone n tω= . we can construct

the vector of tones
tones(t) =  (tone(16), tone(14), tone(12)).

Letting p = 1/2, corresponding to half a second, we can likewise construct a vector of note
durations, thus duration = (time(0, 1), time(1, 2), time(2, 3)).  Forming the scalar or
dot-product of these two vectors gives the tune or lead, as lead = tone ⋅⋅⋅⋅ duration , which is
plotted as a temporal function in Fig. 32 next.

0.5 1 1.5 2

-1

-0.5

0.5

1

t

lead

Fig. 32

Although this plot is not very edifying, it is included on the basis of ‘what we can plot we can
play’ (WWCPWCP).

Harmony

In a similar manner we can construct a tenor part to harmonise with the lead above it, as in
Fig. 33.  This part is summarised by the vector notes = (tone(19), tone(17), tone(16)) with the
duration vector the same as before, so that the tenor part is again tenor = notes ⋅ duration.  This
is plotted in Fig. 34.

A linear combination of these parts which accentuates the lead at the expense of the tenor,
namely tenor + lead = 1.5 lead + 0.9 tenor, constitutes the two part harmony shown in Fig. 35,
with the corresponding plot indicated in the accompanying graph of Fig. 36.

µ 19
17 16

Fig. 33 0.5 1 1.5 2

1

-0.5

0.5

1
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We can likewise construct the baritone part indicated in Fig. 37.  Describing this by the vector
notes = (tone(12), tone(11), tone(7)) and 'dotting' with the duration vector gives the function
of t plotted in the accompanying Fig. 38.

The three parts can again be combined according to say

tenor + bari + lead = 1.5lead + 0.9tenor + 1.3bari, to give the three part harmony indicated in
Fig. 39 and graphed in Fig. 40.
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We can finally in the same manner as before, add the base part indicated in Fig. 41, with its
accompanying plot in Fig. 42 to get the four part (barbershop voiced) harmony with its graph,
shown in Figs. 43 and 44 respectively.
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In MATHEMATICA the above plots can be converted to sound by simply replacing the plot
command with the play command, so that we can in fact listen to the above melodies and
harmonies.

Harmonic highways

Seasoned barbershoppers would find the above harmonies rather mundane, so they would
perhaps look for more interesting harmonic highways, containing perhaps sequences of
chromatic modulations based on the so-called cycle or circle of fifths, this being
predominantly a succession of dominant seventh chords following a predetermined path to
resolution.

Possible harmonic sequences with contrapuntal overtones for the 'Three Blind Mice' clip, are
indicated in Fig. 45, with an additional little embellishment in the last graph, illustrating the

idiosyncrasies of barbershop baritones.*

               Via the supertonic ninth Via the submediant seventh           Via the medient seventh

Fig. 45

It is left as an exercise for the reader to construct the appropriate scalar products of the above
notes and duration vectors to produce the time based functions and their graphs which can
then be played in MATHEMATICA.

Concluding Remarks

The tag indicated in Fig. 43 was programmed into MATHEMATICA with the sine
waveforms replaced by the output waveform in the right hand frame of Fig. 15, containing
different values of γ and ωn which were chosen from Fig. 17 and assigned for each vertical
chord, with a view to mimicking the first formant only of certain selected vowel sounds.

The computational effort was immense!

At the time MATHEMATICA version three was being used without success.  The entire
coding was subsequently E-mailed to Support@wolfram.com, where it took a Windows
machine with a speed of 300 M and 64 MB of RAM somewhere around a couple of days for
MATHEMATICA version 4 to render the functions being worked upon.  However once the

                                                
*Barbershoppers actually sing short snippets like the above.  They call them barbershop tags.
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wavefile was created its existence ensured only a matter of seconds in which to hear the
noise.

Unfortunately the sound is somewhat marred by the odd click or pop.  There may also be
aliasing errors, poor quality speakers etc. distorting it, otherwise the effect is quite pleasing.

Fig. 46

Future work

The idea is to repeat the above exercise with four damped harmonic motion equations
coupled together as a system of ordinary differential equations, in an attempt to capture the
four formants of various vowel sounds.

It would also be interesting to replace the equi-tempered notes by their justly tuned diatonic
counterparts to optimise the synergistic effects of having whole-number frequency ratios in
the harmonics.
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