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Introduction

The problem of finding Hamiltonian circuits in a network (directed) graph is one of the well-known
problems of graph theory. There are no known simple necessary and sufficient conditions for a general
digraph or graph to have a Hamiltonian circuit. However, there are many algorithms for finding and
calculating Hamiltonian circuits of a digraph or graph. This paper deals with such an algorithm. The
algorithmic method used is particularly straightforward, suitable for interpretation with DERIVE and
suitable for introducing the problem to mathematics students.

Network Graphs and Digraphs

Some Basic Definitions

A network (di)graph G is a pair ( V , E ) where V is a non-empty set of vertices and E is a set of
edges. Each edge e ∈  E corresponds to a pair  ‘v1,v2’ of vertices. If  ‘v1,v2’ is an unordered pair then
we say that e is an undirected edge, else if ‘v1,v2’ is an ordered pair then e is a directed edge
v1 → v2. We say that e joins v1 and  v2,  v1 and  v2  are adjacent and v1 and  v2 are incident with e.

If all of the edges of G are undirected then we simply refer to G as a graph, otherwise G will be called a
digraph. However, each undirected edge can be represented by a pair of directed edges (one in each
direction), and so a graph can also be thought of as a special type of digraph.

The adjacency matrix A = [ai,j] for a graph G with V = {v1, ........ vn} is an  n× n matrix such that
ai,j  =  number of edges joining vi to vj (1 ≤ i, j ≤ n). For example

0 1 2 0
1 2 1 0
2 1 0 1
0 0 1 0

v1 v2 v3 v4
v1 0 1 2 0
v2 1 2 1 0
v3 2 1 0 1
v4 0 0 1 0

⇒   A  =G =                                          ⇒

mailto:p.schofield@tasc.ac.uk


Fourth International Derive TI-89/92 Conference

Schofield: Using Derive for Interpreting an Algorithmic Method for Finding Page 2
                     Hamiltonian Circuits (and Rooted Paths) in a Network Graph

Remarks
(i) In this example, since G is graph, A is a symmetric matrix.
(ii) v2 has an undirected loop, and so v2 is technically joined to itself by a pair of directed edges.

Hence a2,2 = 2.
(iii) We shall often adopt the convention of labelling the vertices of a (di)graph G with n vertices as

1, 2, ..., n. This sets up a direct correlation between the vertices of the graph drawing and
rows/columns of the adjacency matrix.

In a digraph, each incident edge directed towards a vertex v is called an in-edge of v and each incident
edge directed away from v is called an out-edge. The in/out degree of a vertex v is the number of
in/out-edges incident with v. In a graph, the degree of a vertex v is simply the number of edges incident
with v.

A walk is a sequence e1 , ... , ek  of edges such that, there exists a sequence of vertices  v1, ..., v(k+1) ,
where (for i = 1, ..., k) ei joins vi and v(i+1). We say the v1 and v(k+1) are connected. A digraph G is
called strongly connected if each pair of distinct vertices of G is connected. A path is a walk in which
each vertex is distinct, and a trail is a walk in which each edge is distinct. A trail is called a circuit (or
a cycle) if it begins and ends with the same vertex.

Some Examples of Graphs

Here is a selection of drawings of some of the featured graphs:

Note: the appearance of the adjacency matrix of a graph will depend upon the way its vertices are
labelled. For example,

      

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

A

 
 
 ⇒ =
 
 
 

          

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

A

 
 
 ⇒ =
 
 
 
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Hamiltonian Circuits and Paths

A Hamiltonian circuit in a (di)graph G is a circuit that visits each vertex of G. Necessarily, G must be
strongly connected to have a Hamiltonian circuit. A Hamiltonian circuit can be directed or undirected.
An undirected Hamiltonian circuit can be represented as pair of directed Hamiltonian circuits.

A Hamiltonian path in a (di)graph G will be defined as a path in G which visits each vertex of G. Such
a path will start from a root vertex, u say, and visit every other vertex of G but, from the end vertex of
the path, there will be no edge link back to u.

Remarks
(i) The problem of finding Hamiltonian circuits and rooted paths in graphs and digraphs is one of

the well-known problems of graph theory. In general, there are no known simple necessary and
sufficient conditions for a graph to be Hamiltonian (have a Hamiltonian circuit). The Open
University Course Unit MT356 (1995) states “The search for necessary or sufficient conditions
for a graph to be Hamiltonian is a major area of study in graph theory today”. Wilson, R. J.
(1995) states “the finding of such a characterisation (for a graph to be Hamiltonian) is one of the
major unsolved problems of graph theory”.

(ii) There are many algorithmic methods for finding and calculating Hamiltonian circuits and rooted
paths in graphs and digraphs. A comprehensive introduction to some of these, and to the more
advanced topic of NP completeness, can be found in Jungnickel, D. (1998). The straightforward
algorithms in this paper make principal use of the adjacency matrix of a digraph G for finding
Hamiltonian circuits and rooted paths. The methods employed are particularly suitable for
processing and interpreting with an algebraic manipulator like DERIVE.

Contracting on an Edge of a Digraph

The reduction step we shall use in algorithms for Hamiltonian circuits and paths involves contracting on
the edge of a directed graph.

The  Contraction Step

Suppose G is a digraph with an edge u→v joining distinct vertices. Form Gu,v by:
(i) deleting all the out-edges from u and all of the in-edges to v;
(ii) combining u and v to form a single vertex with label u,v.

                    G   Gu,v
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Remark
If G also has an edge v→u, then Gu,v will contain a loop u,v→u,v. In most cases it will be simpler to
remove this loop as well.

LEMMA 1
Given a contraction G ⇒  Gu,v on a diedge u→v.
For each Hamiltonian circuit H of G, containing u→v, there exists a unique Hamiltonian circuit H* of
Gu,v ,with the same edge sequence as H, except that, when H follows the path t→u→v→w, H* follows
the path t→u,v→w.

Proof
Follows directly from the construction of the contraction step.

Remark
A similar result to LEMMA 1 will hold for each Hamiltonian path rooted at u.

 Repeating the Contraction on all of the Out-edges of a Root Vertex

The next stage in the reduction is to select a vertex u of G as a ‘root’ vertex and carry out the
contraction step on all of the out-edges of u joining distinct vertices.

     G ⇒ Gu,v1, Gu,v2, ..., Gu,vk

LEMMA 2

Given contractions G ⇒   Gu,v1, Gu,v2, ..., Gu,vk on all of the out-edges of a root vertex u of a digraph G.
For each Hamiltonian circuit H of G there corresponds a unique Hamiltonian circuit H* belonging to
exactly one of Gu,v1, Gu,v2, ..., Gu,vk .

Proof
H contains exactly one of the out-edges from u. Suppose it is u→vj (for some fixed j, 1≤ j ≤k) then, by
LEMMA 1,  Gu,vj contains a unique Hamiltonian circuit H* corresponding to H. None of the other Gu,vi

(i ≠ j) will have contracted on the edge u→vj, and so they do not have Hamiltonian circuits
corresponding to H. (Note: some of the v1, v2, ...,  vk may be labels representing the same vertex of G.)

Remark
A similar result to LEMMA 2 will hold for each Hamiltonian path rooted at u.

LEMMA 3
Given contractions G ⇒   Gu,v1, Gu,v2, ..., Gu,vk on all of the out-edges of a root vertex u of a digraph G.
Let H(G) = the number of Hamiltonian circuits of G and HPu(G) = the number of Hamiltonian paths
(rooted at u) of G, then
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k

u,vj
j=1

k

u u,vj u,vj
j=1

(i)       H( ) = H( )

(ii)      HP ( ) = HP ( )

G G

G G

∑

∑
Proof
Follows as a direct consequence from LEMMA 2 and its Remark.

Illustrating the Algorithm by means of Graph Drawings

An Algorithm for finding Hamiltonian Circuits (and Rooted Hamiltonian Paths) in a
Digraph G:

(i) select a root vertex u of G;

(ii) contract on all of the out-edges of u joining distinct vertices to form Gu,v1, Gu,v2, ..., Gu,vk
;

(iii) for each j = 1, ..., k take u,vj to be the root vertex of Gu,vj and repeat step (ii);

(iv) continue until all of the Hamiltonian circuits (rooted paths) in the reduced graphs can be
easily identified.

Remarks
(i) Obviously, for a general digraph there is no way this algorithm can be completed in ‘polynomial

time’. For example, in the case of the complete graph Kn we have (n-1)! distinct directed
Hamiltonian circuits. However, this algorithm is still worth some detailed study.

(ii) For simple graphs it is instructive to carry out the algorithm using digraph drawings.

Example 1
Find all of the Hamiltonian circuits and paths (rooted at 1) of the following digraph:

G =

(Note: undirected edges have been represented as bi-directional diedges)



Fourth International Derive TI-89/92 Conference

Schofield: Using Derive for Interpreting an Algorithmic Method for Finding Page 6
                     Hamiltonian Circuits (and Rooted Paths) in a Network Graph

Solution

         ⇒

         ⇒

(In these contractions,
loops have been
deleted.)

         ⇒

By this stage it is obvious that G has two directed Hamiltonian circuits: 1,2,5,3,4,1 and 1,4,3,5,2,1
(these are the same undirected circuit transcribed in opposite directions) and two Hamiltonian paths
(rooted at 1): 1,2,4,3,5 and 1,4,3,2,5.

However, continuing the reduction process a further final step, and this time leaving in any resultant
loops, we obtain:

⇒

The Hamiltonian circuits or paths of G can now be identified by the presence or absence of loops.

Counting Directed Hamiltonian Circuits and Rooted Paths

Applying the Contraction to the Adjacency Matrix of a Digraph G

Label the vertices of G using 1, 2, ..., n and designate 1 as the root vertex. Let A be the n×n adjacency
matrix of G. That is, i,j   for 1 i, j .A a n = ≤ ≤ 
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What happens to A when we carry out the contraction step on an edge 1→j (for some fixed j, 1 ≤ j ≤ n)?
Deleting all out-edges from 1 ⇒  deleting first row of A;
deleting all in-edges to j ⇒  deleting jth column of A.
That is, we form the minor1 M1,j. However, to continue the algorithm, 1,j has to become the root vertex
of G1,j, and so we transfer the (j−1)th row of  M1,j to the first row to form the minog  MGj.

For example,

2 3

0 1 2 1
0 0 1 1 3 0

0 0 0 1
if  =  , then  = 2 0 0  and  = 0 0 1 .

2 1 0 0
1 1 0 2 1 0

1 3 1 0

A MG MG

 
    
    
    
        

 

LEMMA 4
Let G be a digraph with an n×n adjacency matrix A.
Let H(A) = the number of directed Hamiltonian circuits of G.
Let HP(A) = the number of rooted Hamiltonian paths of G.

Then

n

1,j j
j=2

n

1,j j
j=2

(i)       H( ) = .H( )

(ii)      HP( ) = .HP( )

A a MG

A a MG

∑

∑
Proof
a1,1 registers G’s loops at vertex 1. Loops cannot be part of Hamiltonian circuits (rooted paths),
consequently the summation starts at j = 2 .
a1,j  (2 ≤ j ≤ n) registers the number of edges of G of form 1→j. A contraction can be carried out on
each one of these edges to form G1,j with adjacency matrix MGj. As a consequence of LEMMA 2 the
number of Hamiltonian circuits (rooted paths) in each G1,j  is equal to the number of Hamiltonian
circuits of G using that particular edge of form 1→j. There are a1,j such edges. Whence result.

Remarks
(i) For teaching purposes, parallels can be drawn between the results of LEMMA 4 and the

calculation of the standard determinant of matrix A.

(ii) For each j (2 ≤ j ≤ n) MGj will be an (n−1)×(n−1) matrix, and so LEMMA 4 can be used as a
recursion reduction step.

(iii) It remains to establish an initial case. We can do this for n = 3.

In this case, there are two possible directed Hamiltonian circuits:
Hence,  1,2 2,3 3,1 1,3 3,2 2,1H( )= . . . .A a a a a a a+ .

There are also two possible Hamiltonian paths (rooted at 1):

                                                
1 Here, I am using the term ‘minor’ to represent the submatrix rather than its determinant.
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Hence,  
1,2 2,3 3,1 1,3 3,2 2,1HP( )= . . ( ) . . ( )

1       if 0
where  ( )  

0       if 0

A a a sg a a a sg a

x
sg x

x

+

==  >

.

Using DERIVE to Calculate the Number of Directed Hamiltonian Circuits and Rooted
Paths

Using DERIVE with the above results  it is straightforward to set up recursive definitions for H(A) and
HP(A)  (see DERIVE file HAM.MTH in the Appendix).

Example 2

Load  HAM.MTH as a DERIVE Utility File and assign to A
the adjacency matrix of the graph G of Example 1 by Authoring:

A := [[0,1,0,1,0],[1,0,0,1,1],[0,1,0,1,1],[1,0,1,0,0],[0,1,1,0,0]]

Simplifying H(A) yields H(A) = 2.
Simplifying HP(A) yields HP(A) = 2.

Remark
In order to make the best use HAM.MTH, students will need an efficient method of generating a wide
selection of network graphs together with their adjacency matrices. For this purpose, I have written a
DERIVE Utility File NGRAPHS.MTH (together with NGRAPHS.DMO and NGRAPHS.DOC). As
well as providing facilities for drawing a wide selection of network graphs (see the graph diagrams in
this paper) NGRAPHS.MTH provides instructions for generating the adjacency matrices and adjacency
lists of these graphs. Albert Rich (co-author of DERIVE) has kindly agreed to include these three files
in the Users Folder of DERIVE 5. These files (including HAM.MTH) can also be obtained by email
from: p.schofield@tasc.ac.uk.

The following table has been constructed using adjacency matrices generated by NGRAPHS.MTH and
HAM.MTH:

TABLE 1  Counting Hamiltonian Circuits and Rooted Paths

GRAPH Number of
directed

Hamiltionian
circuits

Number of
rooted

Hamiltonian
Paths

Approx
Completion

Time
(seconds)

Wheel Graph W20 38 0 13
Complete Graph K9 40320 0 47
Complete Bipartite Graph K5,5 2880 0 11
Complete Bipartite Graph K5,4 0 576 2.6
Complete Bipartite Graph K4,5 0 0 2.5
Tetrahedron 6 0 .09
Cube 12 6 .6
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Octahedron 32 8 .4
Dodecahedron 60 102 41
Icosahedron 2560 3760 57
Petersen 0 24 1.25

Remarks
(i) These results agree with known results for these graphs. The times are for a laptop with 64 MB

of RAM running at 400 Mhz.

(ii) Since these are all examples of undirected graphs, halve the values in Column 1 for the number
of undirected Hamiltonian circuits in each graph.

(iii) The different values for number of Hamiltonian paths in K5,4 and K4,5  result from, in the first
case, the root vertex is in the ‘5-subset’ and, in the second, it is in the ‘4-subset’.

(iv) The Petersen graph is a well-known example of a graph with Hamiltonian paths but no
Hamiltonian circuits.

Generating Hamiltonian Circuits and Rooted Paths of a Digraph

 Lists of Hamiltonian Circuits and Rooted Paths

A simple digraph is a digraph with at most one directed edge linking each ordered pair of vertices (and
no loops). Throughout this Section we shall restrict our examples and arguments to simple digraphs
(although HAM.MTH can also process digraphs with multiple edges and loops).

In Example 1, using the algorithmic process, we were able to find all of the Hamiltonian circuits and
Hamiltonian paths (rooted at 1) of G. It is possible to construct these using DERIVE.

HAM.MTH has been designed to do this using ITERATION, with a seed (input) of form:
[A, [[1],[2, ..., n]]], where A is the n×n adjacency matrix of a digraph. On each application of the
contraction step, A is reduced to a corresponding minog and, in the second element of the seed, the
label of the corresponding vertex is transferred from the second list to the first.

This is not the place to analyse the structure of HAM.MTH in detail, but it is instructive to explain how
it can be used with examples.

Example 3
Load  HAM.MTH as a DERIVE Utility File and assign to A
the adjacency matrix of the graph G of Example 1 by Authoring:

A := [[0,1,0,1,0],[1,0,0,1,1],[0,1,0,1,1],[1,0,1,0,0],[0,1,1,0,0]]
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Simplifying ROUTES(A) yields the following sequence, illustrating each stage of the algorithm:

(Note how these correspond to the graph drawings in the solution of Example 1.)

In the final stage, Hamiltonian circuits, paths are identified by 1’s, 0’s, respectively, in the 1st, 4th, 7th,
etc. matrix (these are the iterated minogs reduced to single element matrices).

Simplifying HCS(A) and HPS(A) will display the following lists of Hamiltonian circuits and
Hamiltonian paths for G:

                                     -  Hamiltonian directed circuits;
                             
                                   -  Hamiltonian rooted paths.

Remark
A nice feature of HAM.MTH is the way it can be used to illustrate the process as well as generating the
final lists of results. This can also be carried out for the graphs in TABLE 1 above.

Canopy Diagrams

We shall now introduce a form of graphical interpretation.

Definitions
Let G be a digraph with vertices 1, 2, ..., n.
The Hamiltonian circuit canopy diagram plots each Hamiltonian circuit [1, h1, h2, ..., h(n-1),1] of G
as a path of points [(0,1), (1,h1), ..., (n−1,h(n−1)), (n,1)].
The Hamiltonian path canopy diagram plots each Hamiltonian path [1, h1, h2, ..., h(n-1)] of G as a
path of points [(0,1), (1,h1), ..., (n−1,h(n−1))] (in this case there is no edge link back to vertex 1).

HAM.MTH can construct canopy diagrams. The 2D-plot facilities of DERIVE are particularly suitable
for this purpose. In the 2D-plot Window it is possible to zoom out until the entire canopy diagram is
displayed, then select a suitable frame to fit the diagram into a maximized 2D-plot Window display.

For best results use the following 2D-plot Window Option settings: Options> Change Plot Colors (Off )
; Options>Display>Points- Connected, Large.
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To operate, assign the adjacency matrix of a graph to A and Simplify HCAN(A) and  HPCAN(A) to
generate sets of points for plotting the canopy diagrams of Hamiltonian circuits and rooted paths,
respectively. Plot these points in DERIVE’s 2D-plot Window to obtain the diagrams (see TABLE 2). In
DERIVE 5, with Options>Simplify Before Plotting (On), canopy diagrams can be plotted directly into
the 2D-plot Window, without first having to Simplify the expressions in the Algebra Window. Be
patient! For the larger canopy diagrams, it will take DERIVE several minutes to calculate all of the
required points.

Remarks

(i) Since all of the examples in TABLE 2 are graphs, their canopy diagrams for directed
Hamiltonian circuits are necessarily symmetric about the line x = n/2 , where n is the number of
vertices.

(ii) Note that, the problem of finding a Hamiltonian circuit in a network digraph G corresponds to
the problem of finding a special type of path in the Hamiltonian circuit canopy diagram of G.

(iii) The appearance of a canopy diagram will also be affected by the way the vertices of a graph are
labelled.
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TABLE 2. Canopy Diagrams
Graph Hamiltonian Directed Circuits Hamiltonian Rooted Paths

Octa-
hedron

Cube

Dodeca-
hedron

Icosa-
hedron

Complete
Bipatite
Graph
K4,4

Petersen
Graph
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The Travelling Salesperson Problem

 The Problem

This well-known problem involves a travelling salesperson, wishing to visit several locations and
returning to his/her starting point, covering the least possible distance. The problem can be reformulated
in terms of finding a minimum weight Hamiltonian circuit in a weighted graph.

Definition
In a weighted graph (digraph) each edge (diedge) is given a weight (a value > 0). For the travelling
salesperson problem the weight of each edge represents the distance between incident vertices
(locations).

Example 4
Find a minimum weight Hamiltonian circuit for the following weighted graph:

G  =

A Solution

The weighted adjacency matrix of G is:   

0 9 7 5 0
9 0 0 1 9
7 0 0 6 6
5 1 6 0 0
0 9 6 0 0

 
 
 
 
 
 
  

HAM.MTH applies a variation of the reduction algorithm to calculate the weights of all of the
Hamiltonian circuits of G. As the successive minogs are generated, the weights of the corresponding
matrix entries are added together to form the combined weights of the paths. The final step calculates
the weights of all of the Hamiltonian circuits.  It is then a simple matter to ask DERIVE to find the
minimum (or maximum) of this set of values.

To operate, assign the above adjacency matrix to A. Simplifying WROUTES(A) will reveal the
iterative process stage-by-stage:
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In the final step, if a matrix entry is zero, then the result is a Hamiltonian path (not a circuit), otherwise
the matrix entry can be added to the sum of the existing path to calculate the total weight of the
resulting Hamiltonian circuit.

A vector containing the weights of all the Hamiltonian circuits can be generated by Simplifying
WHCS(A). The minimum, maximum weights of all of the Hamiltonian circuits can be found by
Simplifying  MINWHCS(A), MAXWHCS(A), respectively.

For graph G with matrix A we have: WHCS(A) = [35, 28, 28, 35];   MINWHCS(A) =   28;
MAXWHCS(A)  =  35.

To find an example of a Hamilton circuit of G with the minimum weight Author and Simplify:
INDEX(WHCS(A),28)  - to obtain the value 2. Next, Author and Simplify:  HCS(A)↓2.
This will display the Hamiltonian circuit [ 1, 3, 5, 2, 4, 1 ]. It is a simple matter to check on the drawing
of G that the weight of this circuit is indeed 28. (Note: 1, 2, 3, 4, 5 correspond to A, B, C, D, E,
respectively, in the drawing of G.)

Remarks
(i) Of course, this very simple example can easily be done by hand. It has been included at this

stage to illustrate the manner in which HAM.MTH works.

(ii) For non-trivial examples of the travelling salesperson problem, students are often asked to use
an algorithm for calculating a lower bound for the Hamiltonian weighted circuits. A typical
example of this kind would be:

Example 5
A weighted complete bipartite graph K5,5 has vertex sets {A, B, C, D, E} and
{V, W, X, Y, Z}. The following table gives the corresponding edge weights:

V W X Y Z
A 28 15 42 46 55
B 32 35 37 32 62
C 12 49 44 53 68
D 19 67 38 18 26
E 40 72 60 21 24
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Calculate a lower bound for the weighted Hamiltonian circuits of this graph.

Exact solution to Example 5, using DERIVE
There are 1440 distinct undirected Hamiltonian circuits (2880 directed circuits) for this graph.

Assign the above matrix table to a variable, B say, by authoring:
B := [[28,15,42,46,55],[32,35,37,32,62],[12,49,44,53,68],[19,67,38,18,26],[40,72,60,21,24]]

Next, construct the 5×5 zero matrix by: Z := vector(vector(0,i,1,5),j,1,5).

An adjacency matrix for the bipartite graph can now be define as:
A := APPEND(APPEND(Z,B`)`,APPEND(B,Z)`)

Using this matrix with HAM.MTH yields the following exact results:
minimum weight of Hamiltonian circuits  =   270    (index 683 , 22.6 sec.);
Hamiltonian circuit with this weight =   [1, 7, 2, 9, 5, 10, 4, 6, 3, 8, 1]        (27.8 sec.)
(Note that, for this example, 1,2,3,4,5,6,7,8,9,10 correspond to A,B,C,D,E,V,W,X,Y,Z, respectively.)

Remark
Adding more vertices to this graph would put the size of the calculation beyond the scope of
HAM.MTH on a PC.

Refining the Algorithm for Graphs

The Basic Refinement

For a graph it is possible to refine the basic algorithm so that each undirected Hamiltonian circuit is
counted only once, instead of twice. The argument can be illustrated using the canopy diagram for the
directed Hamiltonian circuits of a graph. From the diagrams above it is clear that the Hamiltonian
circuit canopy diagram for a graph with n vertices is symmetric about the line x = n/2 .
Consider the first and last edges in the Hamiltonian canopy diagram of a graph G, where v1, ..., vk is
the set of all vertices adjacent to the root vertex 1:

Suppose we have calculated all of the directed Hamiltonian circuits with first edge 1→v1. These will
have terminated in a selection of last edges from v2→1, ..., vk→1. When we subsequently calculate all
of the directed Hamiltonian circuits with first edge 1→v2 we will have already calculated any
(undirected) circuits ending in v1→1. To eliminate these repeated circuits from the calculation we
“cross out” the last edge v1→1 when calculating the circuits starting with 1→v2. Similarly, when
calculating the circuits starting with 1→v3, we will have already calculated any (undirected) circuits
ending in v1→1 and v2→1. Therefore, to eliminate these repeated circuits from the calculation we
“cross out” both of the last edges v1→1 and v2→1 when calculating the circuits starting with 1→v3.
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Continuing in this manner (up to vk) each undirected Hamiltonian circuit will be counted exactly once
by this refinement of the algorithm.
(Note that, for vk itself, all of the last links will have been “crossed out” and so there will be no
remaining (undirected) Hamiltonian circuits to calculate at this final stage.)

Applying the Refinement to the Adjacency Matrix of a Graph

Let A be the adjacency matrix of a graph G with vertices labelled 1, 2, ..., n. Then A is a symmetric
matrix, and the first and last edges of Hamiltonian circuits (rooted at 1) of G will be represented by non-
zero entries in the first row and first column of A, respectively. Suppose, these non-zero entries are a1,vi

(= avi,1), for i = 1, ..., k. Let ZA0= A, ZAj = matrix A with elements av1,1 , ..., avj,1 replaced by 0 (1 ≤ j < k)
and let MGZj be the minog MGj of ZA(j-1). To calculate the number of undirected Hamiltonian circuits of
G we can refine the first reduction step of the basic algorithm to:

k 1

1,vj j
j=1

       H( ) = .H( ))A a MGZ
−

∑
Then continue with the basic reduction for digraphs on the resulting minogs.

In HAM.MTH Simplifying H1(A) (where the adjacency matrix of a graph G has been assigned to A)
will calculate the number of undirected Hamiltonian circuits in G.

The following table was constructed using HAM.MTH in combination with NGRAPHS.MTH:

TABLE 3  Counting undirected Hamiltonian circuits

GRAPH Number of
undirected

Hamiltionian
circuits

Approx
Completion

Time
(seconds)

Wheel Graph W20 19 12.6
Complete Graph K9 20160 40
Complete Bipartite Graph K5,5 1140 8.5
Tetrahedron 3 .09
Cube 6 .6
Octahedron 16 .35
Dodecahedron 30 41
Icosahedron 1280 56.2
Petersen 0 1.26

Remarks
(i) Although the ‘size’ of the calculation has been reduced, in the sense that the algorithm is only

calculating half as many Hamiltonian circuits, there is not a corresponding saving in time.

(ii) Similar refinements for graphs have been incorporated into HAM.MTH to apply to the other
algorithms. For example: ROUTES1(A); HCS1(A); WROUTES1(A); WHCS1(A).

(iii) Suggestions for further refinements of the algorithms for graphs can generate discussion points.
For example:
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•  always select a vertex of least degree as the root vertex; label the root vertex 1 and label
the adjacent vertices to the root vertex 2, ..., k, then the summation in HAM.MTH can
be over j = 2 to k−1;

•  extra necessary conditions could be included at each stage of the basic algorithm to
filter out minogs that do not lead to Hamiltonian circuits.

Conclusions

The adjacency matrix of a graph is normally the first method that a student encounters for numerically
storing the vertex-edge information. The algorithms of this paper make principal use of the adjacency
matrix to achieve their results. I feel that this treatment is suitable for introducing the topic to a cohort
of mathematics students (as opposed to students following courses with a mainly computing
background). Techniques based upon the adjacency matrix of the graph, together with constructions
allied to minors and row expansions of matrices, should follow on naturally from a mathematics
student’s experience.

The algorithmic methods used are particularly suitable for interpretation with DERIVE (or a similar
algebraic manipulation package). A nice feature of DERIVE is the application of the ITERATES
instruction to illustrate the step-by-step reductions at each stage of the algorithms. With the advent of
more powerful algebraic manipulation programs, in future, more uses may be made of adjacency
matrices in algorithms involving network graphs.

The powerful 2D-graphics facilities of DERIVE have also played an important role in understanding the
topic. The ability to display canopy diagrams in a flexible and informative manner has already lead to
an argument in this paper for refining the basic algorithm to calculate undirected Hamiltonian circuits
using the symmetric adjacency matrix of a graph.
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Appendix  (Listing of HAM.MTH)

HAM.MTH will run in both DERIVE 4 and DERIVE 5. However, in DERIVE 4 you will need to
Simplify expressions in the Algebra Window before 2D-plotting. In DERIVE 5, with the 2D-plot option
(On), expressions can be plotted directly into the 2D-plot Window.
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