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 Moore-Penrose inverse of a matrix

It is well-known that the unique inverse 1−A  of a matrix A, which satisfies the condition
1 1− −= =A A AA I

only exists if A is square and nonsingular, i.e. ( )rank
n n

n
×

=A .

However, the also unique Moore-Penrose inverse 
n m

+

×
A , which satisfies the four conditions

+ =AA A A (1)
+ + +=A AA A (2)

( )+ +′ =A A A A (3)

( )+ +′ =AA AA (4)

exists for every matrix 
m n×
A , regardless of its dimension and rank. A DERIVE 5 function for the

computation of the Moore-Penrose inverse is presented in the next section.

A wealth of properties holds for the Moore-Penrose inverse of which the following three will
be useful later in this paper:

( )+ +′ ′ =A A A A (5)
+′ ′=A AA A (6)

( ) ( ) 1rank
m n n n

n −+ +

× ×
′ ′= ⇔ = ⇔ =A A A A A A A I (7)

The Moore-Penrose inverse (or, more generally, any generalized inverse, i.e. any matrix satis-
fying condition (1)) of a matrix can be used to determine the solution(s) of a system of linear
equations

1 1m n n m× × ×
=A x b

Such a system is consistent if and only if
+ =AA b b

If =Ax b  is consistent, its general solution is given by

( )+ += + −x A b I A A z

mailto:k.schmidt@wi.fh-schmalkalden.de


Fourth International Derive TI-89/92 Conference

Schmidt: An Application of the Moore-Penrose Inverse to Linear Regression Page 2

where 
1n×

z  is an arbitrary vector.

In a later section below we will see how the Moore-Penrose inverse can be used to show that
the so-called system of normal equations, which is derived by applying the principle of least
squares in linear regression, is consistent regardless of the rank of the regressor matrix. We
then provide the general solution of the system of normal equations, and highlight the fact that
the usual rank assumption on the regressor matrix assures a unique solution.

Computation of the Moore-Penrose inverse

In a previous paper (Schmidt 1998) the Greville algorithm for the computation of the Moore-
Penrose inverse was described and implemented in DERIVE 4 for matrices with

( )min , 2m n ≤ , i.e. vectors, and matrices which have either only two rows or only two col-
umns. For the sake of convenience we repeat here the description of the Greville algorithm,
which leads to the unique Moore-Penrose inverse in a finite number of iterations.

We start with a simple formula to calculate the Moore-Penrose inverse if 
1n×

=A a  is a vector:

1 if 
if 

′+ ′ ≠
=  ′ =

a a a a 0
a

0 a 0
(8)

We now consider the column notation of A:

[ ]1 2 nm n×
=A a a a!

and denote the submatrix, which comprises the first k columns of A, by

[ ]1 2k k
m k×

=A a a a!

Hence

[ ]1k k k−=A A a

Moreover, we define the following vectors for 2j ≥ :

( )
1 1

1 1

1
1

j j j j

j j j j

j j
j j j

j j

+ +
− −

+
− −

+
+

′′ ′=

= −

−′ ′= + ′+

d a A A

c I A A a

c c
b c d

d a

Note that j
′d  is a row vector, jc  a column vector (and hence j

+c  a row vector) and j
′b  a row

vector. Then we have

1 1
1

j j j j
j j j

j

+ +
+ − −+

−

 ′−  = =   ′ 

A A a b
A A a

b
(9)
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Since 1 1=A a  is a matrix having only one column, its Moore-Penrose inverse is easily calcu-
lated by (8). Using (9) we can then iteratively calculate 2

+A , 3
+A , ..., n

+ +=A A .
The following DERIVE 5 functions can be used to compute the Moore-Penrose inverse of any
matrix:

mpi(A) :=
  Prog
    APLUS := mpiv(A COL [1])
    J := 2
    Loop
      If J > DIM(A`)
         RETURN APLUS
      aj := A COL [J]
      dt := aj`·APLUS`·APLUS
      c := (IDENTITY_MATRIX(DIM(A)) - A COL [1, ..., J - 1]·APLUS)·aj
      bt := mpiv(c) + (1 - mpiv(c)·c)/(1 + dt·aj)·dt
      APLUS := APPEND(APLUS - APLUS·aj·bt, bt)
      J :+ 1

mpiv(a) :=
  Prog
    If a`·a = 0
       RETURN 0·a`
    RETURN a`/ELEMENT(a`·a, 1, 1)

The function mpiv(a), which is used repeatedly inside the function mpi(A), returns the
Moore-Penrose inverse of a (column) vector a passed as parameter. The function mpi(A)
calculates the Moore-Penrose inverse of a matrix A passed as parameter.

Linear Regression and the Moore-Penrose inverse

We consider the (multiple) linear regression model

1 11

b
K NN KN × ×××

= +y X u

where y is the vector of observations on the dependent variable, X the regressor matrix, bbbb a
vector of unknown parameters, and u a vector of disturbances with

[ ] [ ] 2E ; D σ= =u u I0

Denoting an estimator of the unknown parameter vector bbbb by b" , we have

b=
= −

y X
u y y

""
" "

The most popular estimator for bbbb is the least squares estimator which minimises the sum of
squared residuals

( ) ( ) ( )2
b

1
b b b min

N

i
i

uϕ
=

′′= = = − − →∑ u u y X y X "
" " "" " "

Note that
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( ) ( ) ( )b b b

b b b b

b b b2

ϕ

′ ′

′

′= − −

′ ′ ′ ′= − − +
′ ′ ′= − +

y X y X

y y y X X y X X
X X y X y y

" " "

" " " "

" " "

is a convex function since ′X X  is a nonnegative definite matrix. Therefore, finding its first
derivative

( ) ( )( )b
b

b
b

2

2 2

∂ϕ
∂

′

′

′′ ′ ′= − + +

′ ′= − +

y X X X X X

y X X X

"
"

"
"

and setting it equal to 0 is necessary and sufficient for determining the minimum of ( )bϕ " :

1

1

b

b

b

2 2
K

K

×

×

′′ ′− + = ⇔

′ ′− + = ⇔

′ ′=

y X X X 0

X y X X 0

X X X y

"

"

"

The final equation constitutes the so-called system of normal equations.
Under the assumption that ( )rank K=X  we can easily derive the Least Squares estimator
from the normal equations

( ) ( )

( )

1 1

1

b

b

b

− −

−

′ ′= ⇔

′ ′ ′ ′= ⇔

′ ′=
I

X X X y

X X X X X X X y

X X X y

"

"

"

#$%$&

One could get the impression that the system of normal equations is inconsistent if
( )rank K<X . However, this is not true.

Observe that the system of normal equations is essentially a system of linear equations:

'' 'b′ ′=
xA b

X X X y"

Using properties (5) and (6) of the Moore-Penrose inverse, it is easily shown that the system
of normal equations is consistent:

( )
+

++ +

′

′ ′ ′ ′ ′= ⇒ = =
X

X

AA b b X X X X X y X XX y X y#%&#$%$&

Hence, its general solution is given by

( )+ += + − ⇒x A b I A A z    
( ) ( )

( )

b
+ +

+ +

+ +

 
 ′ ′ ′ ′= + −
 
 

= + −
X X

X X X y I X X X X z

X y I X X z

"
#$%$& #$%$&

where 
1K×

z  is an arbitrary vector.
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The number of solutions, however, depends on the rank of the regressor matrix. If
( )rank K=X , it follows from (7) that + =X X I , and the general solution simplifies to the

unique solution

'b + +

+

 = + −  
=

I
X y I X X z

X y

"

i.e. the Least Squares estimator is simply the product of the Moore-Penrose inverse of the re-
gressor matrix and the vector of the observations on the dependent variable.
If, however, ( )rank K<X , we have an infinite number of solutions.

Therefore, it is not the consistency of the system of normal equations that is guaranteed by
assuming X to be of full column rank, but the uniqueness of its solution.
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