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I ntroduction

‘Mathematics is fun’ is not a cry universally proclaimed by students and yet mathematical
puzzles and games found in competitions and Challenges often attract the interest of students
who regularly claim ‘I can't do maths!’. Sadly, it would seem that perhaps the fun is
disappearing from mathematics syllabuses as the pressures on students to succeed in
examinations increase, and the attendance by student mathematicians at public lectures which
discuss such ‘recreational’ mathematics is seen perhaps by teachers as of less academic value
and hence of low priority.

One such recreational maths topic is that of magic squares. The subject of magic squares has
a history that can be traced back almost 2500 years ago to ancient China. The number of
books, journal papers and other articles written on the subject, by both established academic
scholars and ‘amateur’ mathematicians, are far to numerous to list, but the interested reader
might wish to start with the recreational works of Rouse Ball [1], Kraitchik [2], Benson &
Jacoby [3], and the Scientific American article on magic squares and magic cubes by Martin
Gardner [4]. For internet users, a useful web site to start with on magic squares and in
particular some of the history of the subject, can be found at {vww.grogno.con/magic] .

The author’s own interest in magic squares was re-awakened by a challenge issued in an
article in an edition of the DERIVE Newsletter in December 1998, [5], which asked ‘how
can one obtain the 880 different order-4 magic squares with DERIVE? . In trying to answer
this challenge, it became apparent from some investigative research on the subject that:

* magic squares as a subject is not dead. There are still many articles being published about
the properties of various types of such squares and their algorithmic implementation, as
the references quoted in this paper show.

* many articles are now concentrating on the algebraic properties of magic squares as
illustrations of aspects of linear algebra taught primarily to undergraduate students. (see
for example[6], [7], [8], [9] )

e agorithms that construct various types of magic squares are well known and are
implemented as built-in functions in some mathematical software. For example, MatLab
has the built-in function magic(n) that returns an nxn (n = 3) matrix constructed from the
integers 1 through to n® with equal row and column sums. The implementation of magic
square algorithms in itself can be a useful exercise for students studying computer
programming, whether it be in atypical programming language such as C++ or perhaps
using the programming facilities of a CAS such as DERIVE 5.


http://www.grogno.com/magic
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Teaching and L earning I ssues

In this paper, an attempt is made to put together examples of student worksheets or
coursework that can be used to support and strengthen student understanding of matrix
algebra and some conceptsin linear agebra. A further aim, indeed perhaps a more significant
am, is that of developing students' generic mathematical skills. Skills such as the ability to
conjecture hypotheses, justifying/proving such hypotheses, interpreting results, the ability to
generdise, etc. are surely important in the development of potential mathematics graduates,
and yet perhaps too much emphasis these days is placed on students' ability just to learn and
apply routine techniques. It is the author’s belief that a CAS should be an integral part of the
students' and teachers toolset in the battle to develop such skills (see [10]). Hence, the
effectiveness of the proposed courseworks that follow should be judged on their potential for
skills development as well as improved conceptual understanding of a particular subject
domain. No novel developments of properties of magic squares are claimed in this paper, but
the application of a‘fun subject’ and the appropriate use of technology in the development of
mathematical skills should be appealing to all teachers.

In what follows, each coursework presented is followed by a discussion of the rationale for
the aspects of the coursework in terms of skills development and a brief description of more
detailed sources of solution to the questions. DERIVE 5 is the computer algebra system
(CAS) used in these examples, but other software platforms could be used as desired. The
courseworks are such that they assume more prior knowledge of matrices and linear algebra
as they go along. As the commentaries suggest, their use could be as an investigative ‘lead-
in" to some aspect of linear algebra using something like a constructivist approach to
teaching, or as supporting exercises after some aspect of linear algebra theory has been
covered in class.

Magic Squares— definitions and ter minology

Of course, students will need some briefing on magic squares before undertaking any
coursework. The amount of detail will depend on the teacher’s requirements — part of the
learning process could be to ask the students to undertake their own research into the subject
prior to any coursework and perhaps to present their findings to their peers. A few definitions
and terms are given here for clarity and continuity within this paper.

We define an nxn magic square to be a square array of n’> numbers (i.e. a square matrix)
whose rows, columns and two main diagonals sums are all equal and have vaue s (often
termed the magic constant). By convention, magic squares are often thought of as having
entries that are integers and maybe consecutive integers from 1 to n® (often termed a normal
magic square). In fact, many of the theorems quoted about magic squares do not need these
restrictions and in general entries may be rational, real or complex. For the purpose of this
paper, integer entries will be assumed for convenience, with the special case of consecutive
integers starting from 1 included as desired to emphasise some point of understanding.

Thus, for example, the following are all 3x3 magic squares
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the first being the oldest and simplest normal magic square known, formed of consecutive
integers 1..9 and magic constant value 15; the second recognised as the 3x3 identity matrix
with repeated entries and with s = 3; the third including non-negative and repeated integer
entriesand withs= 0.

The 4x4 magic square

15 10 3 60
% 516 9-
4 11 2 70
8 13 127

is made up of the first 16 consecutive integers starting from 1, has magic constant 34 for all
rows, columns and two main diagonals as required, but has the extra properties that all
‘broken diagonals' (4, 10, 13, 7), (14, 5, 3, 12), (10, 16, 7, 1), (3, 9, 14, 8), (8, 2, 9, 15),

(13, 7, 4, 10) similarly add up to 34. A magic square with such a property is known as
pandiagonal (or diabolic, Nasik, perfect, etc.!).

Details of many other types of magic squares with extra ‘magic’ properties can be found in
the references quoted. Magic squares obtained by appropriate reflections or rotations of a
given magic square are deemed to be equivalent and are not counted in the numbers of magic
sguares of a given order.

The case of 3x3 magic sguares is used significantly as in many examples this serves to
illustrate the point. Extensions to 4x4, 5x5 and higher order magic squares are included when
potential generalisations to nxn magic squares are considered. It is assumed that the CAS is
used to avoid tedious matrix manipulations, even in the 3x3 case.

Coursework #1 Basic properties of magic squares

@B 1 60
1. Consider the 3x3 normal magic sgquare % 5 7%. By rotating and reflecting the
& 9 2

elements of this matrix in an organised way, write down 7 other 3x3 magic squares that
are equivaent to the given one. In each case, state clearly the nature of the rotation or
reflection.

Pountney: M agic Squares and Derive Page 3



o

Contents

Fourth International Derive T1-89/92 Conference

2. For the 3x3 normal magic square, the magic constant is 15. Find a formulae for the magic
constant for an nxn normal magic square and confirm that it holds for the 4x4 case where
the magic constant is 34. (Hint: the answer is most easily obtained by using the formulae
for the sum of the first n?> numbers. The SUM command in DERIVE might help here)

3. Use tria-and-error to convince yourself that a 2x2 normal magic square involving the
numbers 1,2,3,4 does not exist.

4. For the 3x3 case, write down the set of triples from the numbers 1 to 9 inclusive whose
sum is 15. Use this set to explain logically why for a 3x3 normal magic square:
)] the centre element must be a 5.
i) A 1 cannot appear as acorner element.
Hence write down possible 3x3 normal magic squares. Is your list the same as your
answer to 1. above?

5. Try the same process for the 4x4 normal magic square case. Isthe process likely to lead
to an easy identification of all the distinct 4x4 possibilities? What is the problem?

@ b cO
6. Writing the 3x3 normal magic square in the form %ﬂ e f B , then one can begin
B h ig
to write down equations to determine the values of theintegersa, b, c, ....... such as:
a+tb+c=15, d+e+f=15 g+h+i=15 for each of the row sums,
and similarly for the column sums and the two diagonal sums. This gives eight
equations in the nine unknowns. A ninth equation can be written knowing that the sum
of the entries equals 3 times the magic constant as:

atb+c+d+e+f+g+h+i=45

Use the Solve>System command in DERIVE to attempt a solution to this set of nine
equations in nine unknowns. Analyse and comment on your results.

7. Attempt a similar solution method as in 6. above but for a 4x4 magic square. What
happens now?

Discussion of coursework #1

This is purposely aimed at students who have a little knowledge of equations, rotations,
reflections and solution of systems of equations, and maybe an idea about what the term
‘matrix’ means. As such it could suit investigative work in the A-level (pre-degree) studies.
Task 4 might be a challenging step into logical thinking for many students and task 5 might
well be their first confrontation with a problem without a neat, closed solution. The CAS is
usefully employed to provide the required sum in task 2 if the students cannot remember the
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formula for the sum of the first n integers starting from 1 and/or do not realise how the sum
of the first n? numbers can be obtained.

Finally, the CASis used to attempt a solution to a system of 9 equationsin 9 unknowns as an
aternative strategy to find 3x3 normal magic squares. A typica DERIVE output is shown
below:

fi=
#2:
Ha:
#4:
#5:
#6:
7=
Ha:
#e: e Integer [1. ?]

#1A: SOLUE{[a + b + ¢ =15, d + e + f =15, g+ h + i =15, a +d + g =15, b + e + h =15, ¢

Integer [1. 7]
Integer [1. 7]
Integer [1. 9]
Integer [1. 7]
Integer [1, 7]
Integer [1, 7]
Integer [1. 7]

" " " " LR TET "
m m m m M mMm m m

Integer [1. 7]

o= @ m oo oA o0 oo

+f +4i=15, a+e +i=15. ¢c +e +g=15, a+h +c +d+e +f + g+ h+is=45],
[a. b, c. d. e. £. g. h, i])

#l: [a+i=1B~h+h=1Bac-h-i=-5ad-h-2i=-1Bane=5af+h+2i=28
Ag+h+i=15]

The variables have been declared as precisely as possible but the output solution has only
confirmed that e = 5. Students should observe that DERIVE has only produced 7
relationships between the variables even though 9 equations were input. The brighter student
should begin to suspect that ‘we didn’'t really have 9 equations to start with’ and that ‘two
equations could have been obtained by rearranging the other 7 somehow’. In fact, the same
solution expression is obtained if the variables are each declared as any real number. Thus a
bright student could deduce that the centre element of a 3x3 magic square is always equal to
g3.

Task 7. should soon raise the query ‘where do | get 16 (independent) equations from? The
best | can dois 11. So, there are bound to be lots of answers.’
Coursework #2 Sums and products of magic squares

Confirm by inspection that a 3x3 magic square can be written in general form as:

s/3+u s/3-u+v s/3-v []
M:%/3—U—V s/3 s/3+u +v%
Hs/3+v s/3+u-v s/3-u

where u , v are arbitrary (integers) and s is the magic constant. Use this representation to
determine answers to the following:
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1. If M isa3x3 magic square, isM? also amagic square and what about other integer
powers M3, M, etc. ? Conjecture aresult.

2. If any two 3x3 magic squares of the same order are multiplied together, is the result aso
a magic square? What if three (four, five....) magic squares are multiplied together?
Conjecture aresult.

3. What are the conditions on u and v above for M to be non-singular? Investigate a possible
relationship between the singularity of M and whether M is magic or not. Conjecture a
result.

4. What are the conditions on u and v above for M to be normal magic square? When these
values are substituted back into M, how many 3x3 normal magic squares are obtained?

5. Do your conjectures in 1-3 above generalise to higher order magic squares? Consider the
set of 4x4 magic squares. Either find a counter-example that disproves a generalisation of
1-3 above or attempt a proof. It may be noted that a 4x4 magic square can be written in
general form as

@ b c dOo
[
Mz% 9 hg
O j k 10
N
™ onop qd
and with d = s—(atb+c); h = s— (etf+q); | = 2atb+ct+e-g+i-s; k = 2s-2a-b-c-e-f-i;

| = f+g-i; m=s— (ateti); n = 2s-2a-2b-c-e-f+g-i; p = 2atbtetf-g+i-s;
g = atb+ct+eti-s.

The remaining exercises involve consideration of the general nxn magic square.

6. Show that the sum of two nxn magic sguares is an nxn magic square. If the two magic
squares have magic constants s; and s, then what is the magic constant of the sum?

7. Show that the scalar multiplication of an nxn magic square by a (real) number kisaso an
nxn magic square. If the original magic square has magic constant s, what is the magic
constant of the scalar multiple?

Discussion of cour sework #2

The representation given for the 3x3 magic square was quoted for example in [2].
That the middle element is §/3 follows can be deduced from coursework #1 above and
the rest follows from the form of magic squares. DERIVE can now be used to
advantage to compute powers of M as desired for the investigation.
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Questions 1,2 and 3 have been considered for example in [11], [12], [13] and [14].
The student should be able to conjecture that if M is a 3x3 magic square then M¥ is
also magic with magic constant s for every odd positive integer k , and that if M isa
3x3 invertible magic square then M is also magic with magic constant 1/s . Also, the
product of an odd number of magic squares is aso magic. The brighter student might
observe that it is worth investigating question 2 first as question 1's result is a special
case of this.

Having set questions encouraging the mathematical skill of hypothesising results, the
successful students should be encouraged to prove their conjectures. For example, the
more able student could be expected to recognise possibilities of proof by induction
or perhaps the use of the Cayley-Hamilton theorem to prove conjectures about M .

For the normal magic square in question 4, s = 15 and it can be deduced that
alowable valuesfor (u, v) are (1, 3), (-1, 3), (1, -3), (-1, -3), (3, 1), (3, -1), (-3, 1), (-3,
-1). These giverise to the eight 3x3 normal magic squares discussed in coursework #1
guestion 1.

Having considered the 3x3 case to the full, a natural question from an inquisitive
student should be * do my conjectures hold in genera for the nxn case? The answer
isno. For example, in [14] the case

01 0 1 00
dy 1 1 11U

vz O O
0 -1 1 20
0

&2 2 -1 -1

is given. Here M is magic with magic constant 2, non-singular (as DERIVE will confirm
quickly) but M is not magic (again as DERIVE will confirm easily). More details on
powers of 4x4 magic squares can be found in [13]. The general form of the 4x4 magic square
isquoted in[2].

Finally, the student is encouraged to consider the general nxn case in the abstract and as a
prelude to class discussion about vector spaces. These questions have been considered in [6]
and [7] for example.

It should be noted that although DERIVE can readily compute M?, M3, etc. it is not easy to
confirm that these are magic merely by inspection. DERIVE gives the output overleaf. A
DERIVE utility program magic check (M, n) can easily be constructed (especialy in
DERIVE 5) to sum each row, column and the two diagonals of the nxn matrix M, and output
an appropriate message ‘magic’ or ‘not magic’. Perhaps slightly more appealing is to use the
conditionsfor M to be a magic square with magic constant s quoted in [14], namely:

MX=sX, MTX=sX, trace(M)=s, trace(E .M)=s
where

Pountney: M agic Squares and Derive Page 7
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[0

0 0 1O

X:@S, and E= %) 1 0%forthe3x3case.

1

input the magic sguare M

4 0 05

5 5 5
— + — —u tu _— -
3 3 3
5 5 5
#1: —/ - u —u — — +t u tu
3 3 3
5 5 5
— +u — +u-uv _— -
3 3 3
compute M~2
s s s 2
— + — - u +u — -
3 3
s s s
#2: — - u - v —_— — +u + v
3 3 3
= = ]
— +w — +u - v — -
3 3 3
2 2 2 2 2 2 2
g +6-{u —u ) g — 3-{u +u)-{u — vu) g — 3-{u —u)
3 3 3
2 2 2
g — J3-fu + uwy-{u— vl 5 + 6-{u + uy-{u — v} 5 — F-{u +ud-{u - v)
#3:
3 3 3
2 2 2 2 2 2 2
g — 3 {u —wv ) g — 3-{u + u)-{u— v} g +6-{u — v )
3 3 3
compute M™3
s s s 3
—_ — —u *t vy — - v
3 3 3
] -] -]
fi4: — —u - v —_— — +u +v
3 3 3
] ] ]
— + v — +u-v — - u
3 3 3
3 2 3 2 2 2
s +2u-{u —uv) s +2-{u —w }-{v — u) g —%2v-{u —uv)
3 3 3
3 2 3 3 2
g5 — 2-{u - vi-{u + u) s 5 + 2-{u - vi-{u + u)
#5:
3 3 3
3 2 2 2
s +2vu-{u —uv) s +2-{u - vl-{fu g —2u-{u —uv)
3 3 3

Pountney: M agic Squares and Derive
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In the above, the rows and columns sum of M? sum to s° as expected. It is the diagonal sum
that fails. The brighter student will also have observed that the condition M.X = s X shows
immediately that a magic square has eigenvalue s. The above conditions on M have been
used in [14] to prove the conjecture from coursework #2 question 3.

In theory, DERIVE can list al the 880 different normal magic squares of order 4 once all the
appropriate values of a,b,c,d,ef,g and i are substituted into the genera form in question 5.
Thisis essentially what has been donein [3], [15] and others.

Coursework #3 magic squares and linear algebra

In what follows, assume for convenience that the elements of the magic squares are reals
although you should be aware that this is not a restrictive assumption.

1. Isthe set of al nxn magic squares (with al possible values of the magic constant) a
vector space?

2. Istheset of al nxn magic squares (with magic constant not equal to zero) a vector space?
3. Istheset of all nxn magic squares (with magic constant equal to zero) a vector space?

4. Using the representation of a 3x3 magic square given in coursework #2, write down a
basis for the space in question 1. What is the dimension?

Asin question 4 but this time for the space given in question 3.
Repeat questions 4 and 5 but this time using the representation of the 4x4 magic square
given in coursework #2.

o O

7. Conjecture arelation for the dimension of these spacesin question 1 and 3.

8. What relationships exist between the spaces in question 1 and in question 3 and the set of
all nxn matrices?

9. For an nxn magic square with zero magic constant, consideration of the rows, columns
and diagonals leads to 2n+2 homogeneous equations in n? unknowns. Prove that when
expressed in matrix form, the coefficient matrix has rank 2n+1 and hence that the
dimension of the space generated by these squares is n*> —2n —1. Prove also that the
dimension of the space generated by the set of nxn magic squares (with all possible
values of the magic constant) is n” —2n.

Discussion of coursework #3

The use of DERIVE for this coursework is now minimal! Nearly all the investigative
work using a ‘mathematical assistant’ has been done in the previous two courseworks
and we are now at the stage where conceptual understanding is required rather than
asking a student to follow algorithmic procedures. Terms such as vector space, basis
and dimension must be understood even for the 3x3 and 4x4 case. The steps in the

Pountney: M agic Squares and Derive Page 9



Fourth International Derive T1-89/92 Conference

proof required in question 9 are challenging, despite an attempt to lead the student
towards a strategy by attempting the earlier questions.

The details behind questions 1,2 and 3 can be found in [6]. The answers are (yes, no,
yes) respectively. The formulae for the dimensions of the spaces can be found in [7]
together with the proof steps for question 9. Further magic square examples relating
to aspects of linear algebra can befound in[8], and [9].

It could be argued that coursework #3 could be attempted on its own with only the
genera form of the 3x3 and 4x4 magic squares need to complete the exercise, and no
DERIVE investigation needed at all. This may be true, especially for the student
following the classical theorem — proof — corollary - application style of learning.
Again, it should be emphasised that the intention at the outset is to offer the student a
wider range of learning experiences and skills development and ‘learning by
discovery’ should be a part of this. The student should be aware that consideration of
simple cases should naturally lead to speculation about the general case and a desire
to try and prove or disprove conjectures formally. Equally, if presented with a general
result or theorem, students should be looking for special cases to consider. The CAS
here is used (in the author’s view) as an appropriate tool to assist in the learning
development and adds to that devel opment.

And Finally .....

The choice of magic squares as a subject domain was primarily because it is an easy
problem to understand if not to solve. It is not immediately obvious whether the
students’ interest in magic squares will increase or decrease as the above courseworks
are attempted. However, the author’s interest in magic sguares started with a
challenge as described earlier and for those students still interested in a challenge,
here is another one!

Magic squares regularly appear in mathematical puzzle books. In his book, Dudeney,
[16], an author famous for such works, posed the following problem.

‘ can you construct a square of sixteen different numbers (positive integers) so that it
shall be magic whether you turn the square upside down or not? You must not use a
3,4 or 5 as these figures will not reverse; but a 6 reversesto anine, a9 intoa6, a7
intoa2andaz2into a7 The 1,8 and O will read the same both ways. The magic
constant must not be changed by reversal.’

An answer is given in the book. The challengeis* How isit done? Is there a solution
method other than trial and error? Is the solution unique? Can DERIVE or any other
CAShelpat al?
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